40 research outputs found
Measuring Galaxy Clustering and the Evolution of [C II] Mean Intensity with Far-IR Line Intensity Mapping during 0.5 < z < 1.5
Infrared fine-structure emission lines from trace metals are powerful diagnostics of the interstellar medium in galaxies. We explore the possibility of studying the redshifted far-IR fine-structure line emission using the three-dimensional (3-D) power spectra obtained with an imaging spectrometer. The intensity mapping approach measures the spatio-spectral fluctuations due to line emission from all galaxies, including those below the individual detection threshold. The technique provides 3-D measurements of galaxy clustering and moments of the galaxy luminosity function. Furthermore, the linear portion of the power spectrum can be used to measure the total line emission intensity including all sources through cosmic time with redshift information naturally encoded. Total line emission, when compared to the total star formation activity and/or other line intensities reveals evolution of the interstellar conditions of galaxies in aggregate. As a case study, we consider measurement of [CII] autocorrelation in the 0.5 < z < 1.5 epoch, where interloper lines are minimized, using far-IR/submm balloon-borne and future space-borne instruments with moderate and high sensitivity, respectively. In this context, we compare the intensity mapping approach to blind galaxy surveys based on individual detections. We find that intensity mapping is nearly always the best way to obtain the total line emission because blind, wide-field galaxy surveys lack sufficient depth and deep pencil beams do not observe enough galaxies in the requisite luminosity and redshift bins. Also, intensity mapping is often the most efficient way to measure the power spectrum shape, depending on the details of the luminosity function and the telescope aperture
A Foreground Masking Strategy for [CII] Intensity Mapping Experiments Using Galaxies Selected by Stellar Mass and Redshift
Intensity mapping provides a unique means to probe the epoch of reionization
(EoR), when the neutral intergalactic medium was ionized by the energetic
photons emitted from the first galaxies. The [CII] 158m fine-structure
line is typically one of the brightest emission lines of star-forming galaxies
and thus a promising tracer of the global EoR star-formation activity. However,
[CII] intensity maps at are contaminated by
interloping CO rotational line emission () from
lower-redshift galaxies. Here we present a strategy to remove the foreground
contamination in upcoming [CII] intensity mapping experiments, guided by a
model of CO emission from foreground galaxies. The model is based on empirical
measurements of the mean and scatter of the total infrared luminosities of
galaxies at
selected in -band from the COSMOS/UltraVISTA survey, which can be converted
to CO line strengths. For a mock field of the Tomographic Ionized-carbon
Mapping Experiment (TIME), we find that masking out the "voxels"
(spectral-spatial elements) containing foreground galaxies identified using an
optimized CO flux threshold results in a -dependent criterion (or ) at and makes a [CII]/CO power ratio of at
/Mpc achievable, at the cost of a moderate loss of total
survey volume.Comment: 14 figures, 4 tables, re-submitted to ApJ after addressing reviewer's
comments. Comments welcom
The TIME-Pilot Intensity Mapping Experiment
TIME-Pilot is designed to make measurements from the Epoch of Reionization (EoR), when the first stars and galaxies formed and ionized the intergalactic medium. This will be done via measurements of the redshifted 157.7 um line of singly ionized carbon ([CII]). In particular, TIME-Pilot will produce the first detection of [CII] clustering fluctuations, a signal proportional to the integrated [CII] intensity, summed over all EoR galaxies. TIME-Pilot is thus sensitive to the emission from dwarf galaxies, thought to be responsible for the balance of ionizing UV photons, that will be difficult to detect individually with JWST and ALMA. A detection of [CII] clustering fluctuations would validate current theoretical estimates of the [CII] line as a new cosmological observable, opening the door for a new generation of instruments with advanced technology spectroscopic array focal planes that will map [CII] fluctuations to probe the EoR history of star formation, bubble size, and ionization state. Additionally, TIME-Pilot will produce high signal-to-noise measurements of CO clustering fluctuations, which trace the role of molecular gas in star-forming galaxies at redshifts 0 < z < 2. With its unique atmospheric noise mitigation, TIME-Pilot also significantly improves sensitivity for measuring the kinetic Sunyaev-Zel’dovich (kSZ) effect in galaxy clusters. TIME-Pilot will employ a linear array of spectrometers, each consisting of a parallel-plate diffraction grating. The spectrometer bandwidth covers 185-323 GHz to both probe the entire redshift range of interest and to include channels at the edges of the band for atmospheric noise mitigation. We illuminate the telescope with f/3 horns, which balances the desire to both couple to the sky with the best efficiency per beam, and to pack a large number of horns into the fixed field of view. Feedhorns couple radiation to the waveguide spectrometer gratings. Each spectrometer grating has 190 facets and provides resolving power above 100. At this resolution, the longest dimension of the grating is 31 cm, which allows us to stack gratings in two blocks (one for each polarization) of 16 within a single cryostat, providing a 1x16 array of beams in a 14 arcminute field of view. Direct absorber TES sensors sit at the output of the grating on six linear facets over the output arc, allowing us to package and read out the detectors as arrays in a modular manner. The 1840 detectors will be read out with the NIST time-domain-multiplexing (TDM) scheme and cooled to a base temperature of 250 mK with a 3He sorption refrigerator. We present preliminary designs for the TIME-Pilot cryogenics, spectrometers, bolometers, and optics
COMAP Early Science: V. Constraints and Forecasts at
We present the current state of models for the carbon monoxide (CO)
line-intensity signal targeted by the CO Mapping Array Project (COMAP)
Pathfinder in the context of its early science results. Our fiducial model,
relating dark matter halo properties to CO luminosities, informs parameter
priors with empirical models of the galaxy-halo connection and previous CO(1-0)
observations. The Pathfinder early science data spanning wavenumbers
-Mpc represent the first direct 3D constraint on the
clustering component of the CO(1-0) power spectrum. Our 95% upper limit on the
redshift-space clustering amplitude K greatly
improves on the indirect upper limit of K reported from the CO
Power Spectrum Survey (COPSS) measurement at Mpc. The COMAP
limit excludes a subset of models from previous literature, and constrains
interpretation of the COPSS results, demonstrating the complementary nature of
COMAP and interferometric CO surveys. Using line bias expectations from our
priors, we also constrain the squared mean line intensity-bias product,
K, and the cosmic molecular gas
density, Mpc (95% upper
limits). Based on early instrument performance and our current CO signal
estimates, we forecast that the five-year Pathfinder campaign will detect the
CO power spectrum with overall signal-to-noise of 9-17. Between then and now,
we also expect to detect the CO-galaxy cross-spectrum using overlapping galaxy
survey data, enabling enhanced inferences of cosmic star-formation and
galaxy-evolution history.Comment: Paper 5 of 7 in series. 17 pages + appendix and bibliography (30
pages total); 15 figures, 6 tables; accepted for publication in ApJ; v3
reflects the accepted version with minor changes and additions to tex
COMAP Early Science: I. Overview
The CO Mapping Array Project (COMAP) aims to use line intensity mapping of
carbon monoxide (CO) to trace the distribution and global properties of
galaxies over cosmic time, back to the Epoch of Reionization (EoR). To validate
the technologies and techniques needed for this goal, a Pathfinder instrument
has been constructed and fielded. Sensitive to CO(1-0) emission from
- and a fainter contribution from CO(2-1) at -8, the
Pathfinder is surveying deg in a 5-year observing campaign to detect
the CO signal from . Using data from the first 13 months of observing,
we estimate on scales - the first direct
3D constraint on the clustering component of the CO(1-0) power spectrum. Based
on these observations alone, we obtain a constraint on the amplitude of the
clustering component (the squared mean CO line temperature-bias product) of
K - nearly an order-of-magnitude improvement
on the previous best measurement. These constraints allow us to rule out two
models from the literature. We forecast a detection of the power spectrum after
5 years with signal-to-noise ratio (S/N) 9-17. Cross-correlation with an
overlapping galaxy survey will yield a detection of the CO-galaxy power
spectrum with S/N of 19. We are also conducting a 30 GHz survey of the Galactic
plane and present a preliminary map. Looking to the future of COMAP, we examine
the prospects for future phases of the experiment to detect and characterize
the CO signal from the EoR.Comment: Paper 1 of 7 in series. 18 pages, 16 figures, submitted to Ap
The evolution of the cosmic molecular gas density
Large scale structure and cosmolog
No Evidence for Enhanced [O III] 88 μm Emission in a z ̃ 6 Quasar Compared to Its Companion Starbursting Galaxy
We present Atacama Large Millimeter/submillimeter Array band 8 observations of the [O III] 88 μm line and the underlying thermal infrared continuum emission in the z = 6.08 quasar CFHQS J2100-1715 and its dust-obscured starburst companion galaxy (projected distance: ̃60 kpc). Each galaxy hosts dust-obscured star formation at rates >100 M ☉ yr-1, but only the quasar shows evidence for an accreting 109 M ☉ black hole. Therefore we can compare the properties of the interstellar medium in distinct galactic environments in two physically associated objects, ̃1 Gyr after the big bang. Bright [O III] 88 μm emission from ionized gas is detected in both systems; the positions and linewidths are consistent with earlier [C II] measurements, indicating that both lines trace the same gravitational potential on galactic scales. The [O III] 88 μm/far-infrared (FIR) luminosity ratios in both sources fall in the upper range observed in local luminous infrared galaxies of similar dust temperature, although the ratio of the quasar is smaller than in the companion. This suggests that gas ionization by the quasar (expected to lead to strong optical [O III] 5008 Å emission) does not dominantly determine the quasar’s FIR [O III] 88 μm luminosity. Both the inferred number of photons needed for the creation of O++ and the typical line ratios can be accounted for without invoking extreme (top-heavy) stellar initial mass functions in the starbursts of both sources