198 research outputs found

    The GUINEVERE Project for Accelerator Driven System Physics

    No full text
    paper 9414International audienceThe GUINEVERE project is part of the EUROTRANS Integrated Project of the 6th EURATOM Framework Programme. It is mainly devoted to ADS on-line reactivity monitoring validation, sub-criticality determination and operational procedures (loading, start-up, shut-down, ...) as a follow-up of the MUSE experiments. The project consists in coupling a fast lead core, set-up in the VENUS reactor at SCK*CEN Mol (B), with a GENEPI neutron source under construction by CNRS. To accommodate the accelerator in a vertical coupling configuration, the VENUS building is being heightened. The fast core will be loaded with enriched Uranium and will be moderated and reflected with solid lead (zero power experiment). For the purpose of the experimental programme, the neutron source has to be operated not only in pulsed mode but also in continuous mode to investigate the current-to-flux reactivity indicator in representative conditions of a powerful ADS. In this latter mode it is also required to make short beam interruptions to have access to the neutron population decrease as a function of time: from this spectrum it will be possible to apply different analysis techniques such as "prompt decay" fitting techniques and "source jerk" techniques. Beam interruptions will be repeated at a programmable frequency to improve time spectra statistics. Different sub-criticality levels (keff=0.99, 0.97, 0.95, ...) will be investigated in order to obtain a full set of data points for the final overall validation of the methodology. This paper describes the status of the experimental facility assembling, and the foreseen experimental programme to be started

    Swift: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications

    Get PDF
    Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code Swift. The software package exploits hybrid shared- and distributed-memory task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. Swiftalso evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarise the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with β‰ˆ300 billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with Swift

    Swift: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications

    Full text link
    Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code Swift. The software package exploits hybrid task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. Swift also evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarize the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with β‰ˆ\approx300300 billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with Swift.Comment: 39 pages, 18 figures, submitted to MNRAS. Code, documentation, and examples available at www.swiftsim.co

    Natural CD4+ T-Cell Responses against Indoleamine 2,3-Dioxygenase

    Get PDF
    The enzyme indoleamine 2,3-dioxygenase (IDO) contributes to immune tolerance in a variety of settings. In cancer IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it endorses the establishment of peripheral immune tolerance to tumor antigens. Recently, we described cytotoxic CD8(+) T-cell reactivity towards IDO-derived peptides.In the present study, we show that CD4(+) helper T cells additionally spontaneously recognize IDO. Hence, we scrutinized the vicinity of the previously described HLA-A*0201-restricted IDO-epitope for CD4(+) T-cell epitopes. We demonstrated the presence of naturally occurring IDO-specific CD4(+) T cells in cancer patients and to a lesser extent in healthy donors by cytokine release ELISPOT. IDO-reactive CD4(+) T cells released IFN-Ξ³, TNF-Ξ±, as well as IL-17. We confirm HLA class II-restriction by the addition of HLA class II specific blocking antibodies. In addition, we detected a trend between class I- and class II-restricted IDO responses and detected an association between IDO-specific CD4(+) T cells and CD8(+) CMV-responses. Finally, we could detect IL-10 releasing IDO-reactive CD4(+) T cells.IDO is spontaneously recognized by HLA class II-restricted, CD4(+) T cells in cancer patients and in healthy individuals. IDO-specific T cells may participate in immune-regulatory networks where the activation of pro-inflammatory IDO-specific CD4(+) responses may well overcome or delay the immune suppressive actions of the IDO-protein, which are otherwise a consequence of the early expression of IDO in maturing antigen presenting cells. In contrast, IDO-specific regulatory T cells may enhance IDO-mediated immune suppression

    Tryptophan degradation in women with breast cancer: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Altered tryptophan metabolism and indoleamine 2,3-dioxygenase activity are linked to cancer development and progression. In addition, these biological factors have been associated with the development and severity of neuropsychiatric syndromes, including major depressive disorder. However, this biological mechanism associated with both poor disease outcomes and adverse neuropsychiatric symptoms has received little attention in women with breast cancer. Therefore, a pilot study was undertaken to compare levels of tryptophan and other proteins involved in tryptophan degradation in women with breast cancer to women without cancer, and secondarily, to examine levels in women with breast caner over the course of chemotherapy.</p> <p>Findings</p> <p>Blood samples were collected from women with a recent diagnosis of breast cancer (<it>n </it>= 33) before their first cycle of chemotherapy and after their last cycle of chemotherapy. The comparison group (<it>n </it>= 24) provided a blood sample prior to breast biopsy. Plasma concentrations of tryptophan, kynurenine, and tyrosine were determined. The kynurenine to tryptophan ratio (KYN/TRP) was used to estimate indoleamine 2,3-dioxygenase activity. On average, the women with breast cancer had lower levels of tryptophan, elevated levels of kynurenine and tyrosine and an increased KYN/TRP ratio compared to women without breast cancer. There was a statistically significant difference between the two groups in the KYN/TRP ratio (<it>p </it>= 0.036), which remained elevated in women with breast cancer throughout the treatment trajectory.</p> <p>Conclusions</p> <p>The findings of this pilot study suggest that increased tryptophan degradation may occur in women with early-stage breast cancer. Given the multifactorial consequences of increased tryptophan degradation in cancer outcomes and neuropsychiatric symptom manifestation, this biological mechanism deserves broader attention in women with breast cancer.</p

    WSX1 Expression in Tumors Induces Immune Tolerance via Suppression of Effector Immune Cells

    Get PDF
    Crosstalk between tumor cells and the cognate microenvironment plays a crucial role in tumor initiation and progression. However, only a few genes are known to affect such a crosstalk. This study reveals that WSX1 plays such a role when highly expressed in tumor cells. The expression of WSX1 in Lewis Lung Carcinoma (LLC) and the melanoma cell line AGS induces the death of T cells and inhibits the production of the effector cytokine IFNΞ³ from NK and T cells, resulting in the promotion of tumor growth. These pro-tumorigenic properties of WSX1 are independent of IL27. This key observation reveals a new pathway of tumor-host interaction, which will ultimately lead to better strategies in immune therapy to reverse tumor tolerance

    Differentiation and Recruitment of Th9 Cells Stimulated by Pleural Mesothelial Cells in Human Mycobacterium tuberculosis Infection

    Get PDF
    Newly discovered IL-9–producing CD4+ helper T cells (Th9 cells) have been reported to contribute to tissue inflammation and immune responses, however, differentiation and immune regulation of Th9 cells in tuberculosis remain unknown. In the present study, our data showed that increased Th9 cells with the phenotype of effector memory cells were found to be in tuberculous pleural effusion as compared with blood. TGF-Ξ² was essential for Th9 cell differentiation from naΓ―ve CD4+ T cells stimulated with PMA and ionomycin in vitro for 5 h, and addition of IL-1Ξ², IL-4 or IL-6 further augmented Th9 cell differentiation. Tuberculous pleural effusion and supernatants of cultured pleural mesothelial cells were chemotactic for Th9 cells, and this activity was partly blocked by anti-CCL20 antibody. IL-9 promoted the pleural mesothelial cell repairing and inhibited IFN-Ξ³-induced pleural mesothelial cell apoptosis. Moreover, pleural mesothelial cells promoted Th9 cell differentiation by presenting antigen. Collectively, these data provide new information concerning Th9 cells, in particular the collaborative immune regulation between Th9 cells and pleural mesothelial cells in human M. tuberculosis infection. In particular, pleural mesothelial cells were able to function as antigen-presenting cells to stimulate Th9 cell differentiation
    • …
    corecore