248 research outputs found

    Comparative quantitative analysis reveals preserved structural connectivity patterns in the human and macaque brain

    No full text
    The macaque brain serves as a model for the human brain, but its suitability is challenged by unique human features, including connectivity reconfigurations, which emerged during primate evolution. We perform a quantitative comparative analysis of the whole brain macroscale structural connectivity of the two species. Our findings suggest that the human and macaque brain as a whole are similarly wired. A region-wise analysis reveals many interspecies similarities of connectivity patterns, but also lack thereof, primarily involving cingulate and parietal regions. We unravel a common structural backbone in both species involving a highly overlapping set of regions. This structural backbone, important for mediating information across the brain, constitutes a feature of the primate brain persevering evolution. Our findings illustrate novel evolutionary aspects at the macroscale connectivity level, including the existence of common topological structures, and offer a quantitative translational bridge between macaque and human research

    An efficient approach for spin-angular integrations in atomic structure calculations

    Full text link
    A general method is described for finding algebraic expressions for matrix elements of any one- and two-particle operator for an arbitrary number of subshells in an atomic configuration, requiring neither coefficients of fractional parentage nor unit tensors. It is based on the combination of second quantization in the coupled tensorial form, angular momentum theory in three spaces (orbital, spin and quasispin), and a generalized graphical technique. The latter allows us to calculate graphically the irreducible tensorial products of the second quantization operators and their commutators, and to formulate additional rules for operations with diagrams. The additional rules allow us to find graphically the normal form of the complicated tensorial products of the operators. All matrix elements (diagonal and non-diagonal with respect to configurations) differ only by the values of the projections of the quasispin momenta of separate shells and are expressed in terms of completely reduced matrix elements (in all three spaces) of the second quantization operators. As a result, it allows us to use standard quantities uniformly for both diagona and off-diagonal matrix elements

    Extended morphometric analysis of neuronal cells with Minkowski valuations

    Full text link
    Minkowski valuations provide a systematic framework for quantifying different aspects of morphology. In this paper we apply vector- and tensor-valued Minkowski valuations to neuronal cells from the cat's retina in order to describe their morphological structure in a comprehensive way. We introduce the framework of Minkowski valuations, discuss their implementation for neuronal cells and show how they can discriminate between cells of different types.Comment: 14 pages, 18 postscript figure

    Scholarly communication in transition: The use of question marks in the titles of scientific articles in medicine, life sciences and physics 1966–2005

    Get PDF
    The titles of scientific articles have a special significance. We examined nearly 20 million scientific articles and recorded the development of articles with a question mark at the end of their titles over the last 40 years. Our study was confined to the disciplines of physics, life sciences and medicine, where we found a significant increase from 50% to more than 200% in the number of articles with question-mark titles. We looked at the principle functions and structure of the titles of scientific papers, and we assume that marketing aspects are one of the decisive factors behind the growing usage of question-mark titles in scientific articles

    Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse

    Get PDF
    This study describes cytoarchitectonic criteria to define the prefrontal cortical areas in the mouse brain (C57BL/6 strain). Currently, well-illustrated mouse brain stereotaxic atlases are available, which, however, do not provide a description of the distinctive cytoarchitectonic characteristics of individual prefrontal areas. Such a description is of importance for stereological, neuronal tracing, and physiological, molecular and neuroimaging studies in which a precise parcellation of the prefrontal cortex (PFC) is required. The present study describes and illustrates: the medial prefrontal areas, i.e., the infralimbic, prelimbic, dorsal and ventral anterior cingulate and Fr2 area; areas of the lateral PFC, i.e., the dorsal agranular insular cortical areas and areas of the ventral PFC, i.e., the lateral, ventrolateral, ventral and medial orbital areas. Each cytoarchitectonically defined boundary is corroborated by one or more chemoarchitectonic stainings, i.e., acetylcholine esterase, SMI32, SMI311, dopamine, parvalbumin, calbindin and myelin staining

    An analysis of ultraviolet spectra of Extreme Helium Stars and new clues to their origins

    Full text link
    Abundances of about 18 elements including the heavy elements Y and Zr are determined from Hubble Space Telescope Space Telescope Imaging Spectrograph ultraviolet spectra of seven extreme helium stars (EHes): LSE 78, BD+10 2179, V1920 Cyg, HD 124448, PV Tel, LS IV -1 2, and FQ Aqr. New optical spectra of the three stars -- BD+10 2179, V1920 Cyg, and HD 124448 were analysed. The abundance analyses is done using LTE line formation and LTE model atmospheres especially constructed for these EHe stars. The stellar parameters derived from an EHe's UV spectrum are in satisfactory agreement with those derived from its optical spectrum. Adopted abundances for the seven EHes are from a combination of the UV and optical analyses. Published results for an additional ten EHes provide abundances obtained in a nearly uniform manner for a total of 17 EHes, the largest sample on record. The initial metallicity of an EHe is indicated by the abundance of elements from Al to Ni; Fe is adopted to be the representative of initial metallicity. Iron abundances range from approximately solar to about one-hundredth of solar. Clues to EHe evolution are contained within the H, He, C, N, O, Y, and Zr abundances. Two novel results are (i) the O abundance for some stars is close to the predicted initial abundance yet the N abundance indicates almost complete conversion of initial C, N, and O to N by the CNO-cycles; (ii) three of the seven stars with UV spectra show a strong enhancement of Y and Zr attributable to an s-process. The observed compositions are discussed in light of expectations from accretion of a He white dwarf by a CO white dwarf.Comment: 126 pages, 15 figures, 20 Tables, accepted for publication in the Ap
    corecore