10 research outputs found

    GATA-3 in Human T Cell Helper Type 2 Development

    Get PDF
    The delineation of the in vivo role of GATA-3 in human T cell differentiation is a critical step in the understanding of molecular mechanisms directing human immune responses. We examined T cell differentiation and T cell–mediated effector functions in individuals lacking one functional GATA-3 allele. CD4 T cells from GATA-3+/− individuals expressed significantly reduced levels of GATA-3, associated with markedly decreased T helper cell (Th)2 frequencies in vivo and in vitro. Moreover, Th2 cell–mediated effector functions, as assessed by serum levels of Th2-dependent immunoglobulins (Igs; IgG4, IgE), were dramatically decreased, whereas the Th1-dependent IgG1 was elevated compared with GATA-3+/+ controls. Concordant with these data, silencing of GATA-3 in GATA-3+/+ CD4 T cells with small interfering RNA significantly reduced Th2 cell differentiation. Moreover, GATA-3 mRNA levels increased under Th2-inducing conditions and decreased under Th1-inducing conditions. Taken together, the data strongly suggest that GATA-3 is an important transcription factor in regulating human Th2 cell differentiation in vivo

    Developmental Stage, Phenotype, and Migration Distinguish Naive- and Effector/Memory-like CD4+ Regulatory T Cells

    Get PDF
    Regulatory T cells (Tregs) fulfill a central role in immune regulation. We reported previously that the integrin αEβ7 discriminates distinct subsets of murine CD4+ regulatory T cells. Use of this marker has now helped to unravel a fundamental dichotomy among regulatory T cells. αE−CD25+ cells expressed L-selectin and CCR7, enabling recirculation through lymphoid tissues. In contrast, αE-positive subsets (CD25+ and CD25−) displayed an effector/memory phenotype expressing high levels of E/P-selectin–binding ligands, multiple adhesion molecules as well as receptors for inflammatory chemokines, allowing efficient migration into inflamed sites. Accordingly, αE-expressing cells were found to be the most potent suppressors of inflammatory processes in disease models such as antigen-induced arthritis

    Autoregulation of Th1-mediated inflammation by twist1

    Get PDF
    The basic helix-loop-helix transcriptional repressor twist1, as an antagonist of nuclear factor {kappa}B (NF-{kappa}B)–dependent cytokine expression, is involved in the regulation of inflammation-induced immunopathology. We show that twist1 is expressed by activated T helper (Th) 1 effector memory (EM) cells. Induction of twist1 in Th cells depended on NF-{kappa}B, nuclear factor of activated T cells (NFAT), and interleukin (IL)-12 signaling via signal transducer and activator of transcription (STAT) 4. Expression of twist1 was transient after T cell receptor engagement, and increased upon repeated stimulation of Th1 cells. Imprinting for enhanced twist1 expression was characteristic of repeatedly restimulated EM Th cells, and thus of the pathogenic memory Th cells characteristic of chronic inflammation. Th lymphocytes from the inflamed joint or gut tissue of patients with rheumatic diseases, Crohn's disease or ulcerative colitis expressed high levels of twist1. Expression of twist1 in Th1 lymphocytes limited the expression of the cytokines interferon-{gamma}, IL-2, and tumor necrosis factor-{alpha}, and ameliorated Th1-mediated immunopathology in delayed-type hypersensitivity and antigen-induced arthritis

    A critical control element for interleukin-4 memory expression in T helper lymphocytes

    No full text
    Naive T helper (Th) lymphocytes are induced to express the il4 (interleukin-4) gene by simultaneous signaling through the T cell receptor and the interleukin (IL)-4 receptor. Upon restimulation with antigen, such preactivated Th lymphocytes can reexpress the il4 gene independent of IL-4 receptor signaling. This memory for expression of the il4 gene depends on epigenetic modification of the il4 gene locus and an increased expression of GATA-3, the key transcription factor for Th2 differentiation. Here, we have identified a phylogenetically conserved sequence, the conserved intronic regulatory element, in the first intron of the il4 gene containing a tandem GATA-3 binding site. We show that GATA-3 binds to this sequence in a position- and orientation-dependent manner, in vitro and in vivo. DNA demethylation and histone acetylation of this region occurs early and selectively in differentiating, IL-4-secreting Th2 lymphocytes. Deletion of the conserved element by replacement of the first exon and part of the first intron of the il4 gene with gfp leads to a defect in the establishment of memory for expression of IL-4, in that reexpression of IL-4 still requires costimulation by exogenous IL-4. The conserved intronic regulatory element thus links the initial epigenetic modification of the il4 gene to GATA-3 and serves as a genetic control element for memory expression of IL-4
    corecore