16 research outputs found

    Hochtemperatur-Energietechnik: Anforderungen an Material und Bauteil - Herausforderung für Hersteller und Betreiber

    Get PDF
    Die Erhöhung der Prozessparameter Druck und Temperatur bietet das größte Potenzial für die Effizienzsteigerung von Kraftwerksanlagen. Sie ist jedoch eng an die Werkstoffentwicklung gebunden, da die thermischen und mechanischen Beanspruchungen für eine geforderte Bauteillebensdauer bis an die Grenzbeanspruchbarkeit des Werkstoffes gehen. Um eine sichere Auslegung zu gewährleisten und dennoch eine optimale Werkstoffauslastung zu erreichen, wird weltweit an der Weiterentwicklung der Berechnungsverfahren für komplexe Beanspruchungen gearbeitet, so auch im Institut für Energietechnik der TU Dresden. Ein Forschungsschwerpunkt liegt dabei auf dem Gebiet der thermisch-mechanischen Ermüdung. Aber auch der Betrieb von Anlagen der Hochtemperatur-Energietechnik beeinflusst deren Sicherheit und Verfügbarkeit. Diesbezüglich werden im Beitrag einige Aspekte angerissen.Raising of the process parame- ters pressure and temperature offers the greatest potential for increased power station effi- ciency. However, this is closely dependent on materials devel- opment, as thermal and mechanical stresses over the required service life approach the stress limits of the materi- als. In order to ensure safe designs, but at the same time to optimise material utilisation, the permanent enhancement of design procedures for complex stresses is a subject for R&D worldwide, including the Institute of Power Engineering of the TU Dresden. Here, ther- mal-mechanical fatigue at high temperatures is the main focus of research. But power station operation similarly influences safety and availability. Corresponding aspects are also touched upon in the paper

    HIGH TEMPERATURE CYCLIC TEST RIG – A NEW RIG FOR HOT GAS PARTS LIFETIME VALIDATION

    Get PDF
    Flexible gas turbine operation requires adapted hot gas parts design and lifetime assessment methods. The High Temperature Cyclic Test Rig (HTCTR) is developed to cyclically test internally cooled components from combustor and turbine sections of gas turbines in close-to-engine conditions for a wide range of operating conditions in order to improve component lifetime management. These advanced tests should serve as basis for new model development and validation for conditions that are more representative of those in an engine than the standard material specimen tests

    Hochtemperatur-Energietechnik: Anforderungen an Material und Bauteil - Herausforderung für Hersteller und Betreiber

    Get PDF
    Die Erhöhung der Prozessparameter Druck und Temperatur bietet das größte Potenzial für die Effizienzsteigerung von Kraftwerksanlagen. Sie ist jedoch eng an die Werkstoffentwicklung gebunden, da die thermischen und mechanischen Beanspruchungen für eine geforderte Bauteillebensdauer bis an die Grenzbeanspruchbarkeit des Werkstoffes gehen. Um eine sichere Auslegung zu gewährleisten und dennoch eine optimale Werkstoffauslastung zu erreichen, wird weltweit an der Weiterentwicklung der Berechnungsverfahren für komplexe Beanspruchungen gearbeitet, so auch im Institut für Energietechnik der TU Dresden. Ein Forschungsschwerpunkt liegt dabei auf dem Gebiet der thermisch-mechanischen Ermüdung. Aber auch der Betrieb von Anlagen der Hochtemperatur-Energietechnik beeinflusst deren Sicherheit und Verfügbarkeit. Diesbezüglich werden im Beitrag einige Aspekte angerissen.Raising of the process parame- ters pressure and temperature offers the greatest potential for increased power station effi- ciency. However, this is closely dependent on materials devel- opment, as thermal and mechanical stresses over the required service life approach the stress limits of the materi- als. In order to ensure safe designs, but at the same time to optimise material utilisation, the permanent enhancement of design procedures for complex stresses is a subject for R&D worldwide, including the Institute of Power Engineering of the TU Dresden. Here, ther- mal-mechanical fatigue at high temperatures is the main focus of research. But power station operation similarly influences safety and availability. Corresponding aspects are also touched upon in the paper

    Hochtemperatur-Energietechnik: Anforderungen an Material und Bauteil - Herausforderung für Hersteller und Betreiber

    No full text
    Die Erhöhung der Prozessparameter Druck und Temperatur bietet das größte Potenzial für die Effizienzsteigerung von Kraftwerksanlagen. Sie ist jedoch eng an die Werkstoffentwicklung gebunden, da die thermischen und mechanischen Beanspruchungen für eine geforderte Bauteillebensdauer bis an die Grenzbeanspruchbarkeit des Werkstoffes gehen. Um eine sichere Auslegung zu gewährleisten und dennoch eine optimale Werkstoffauslastung zu erreichen, wird weltweit an der Weiterentwicklung der Berechnungsverfahren für komplexe Beanspruchungen gearbeitet, so auch im Institut für Energietechnik der TU Dresden. Ein Forschungsschwerpunkt liegt dabei auf dem Gebiet der thermisch-mechanischen Ermüdung. Aber auch der Betrieb von Anlagen der Hochtemperatur-Energietechnik beeinflusst deren Sicherheit und Verfügbarkeit. Diesbezüglich werden im Beitrag einige Aspekte angerissen.Raising of the process parame- ters pressure and temperature offers the greatest potential for increased power station effi- ciency. However, this is closely dependent on materials devel- opment, as thermal and mechanical stresses over the required service life approach the stress limits of the materi- als. In order to ensure safe designs, but at the same time to optimise material utilisation, the permanent enhancement of design procedures for complex stresses is a subject for R&D worldwide, including the Institute of Power Engineering of the TU Dresden. Here, ther- mal-mechanical fatigue at high temperatures is the main focus of research. But power station operation similarly influences safety and availability. Corresponding aspects are also touched upon in the paper

    Development of a reference concept for a solar-assisted hybrid cycle for the fossil fuel-fired power plant : A Case Study for Syrdaria Thermal Power Plant, Uzbekistan

    No full text
    In this study, two options of solar heat integration into an existing gas fired thermal power plant are investigated, namely integration into the last high pressure preheater and into the last low pressure preheater. Simulations of both options are done by using models set up in EbsilonProfessional and performing annual simulations with hourly time steps. Two operational schemes are considered for both options: utilization of solar heat to boost the electricity output or to save fossil fuel and keep the output constant. Comparison of the results from the models with solar heat integration with the results from the model of the fossil reference plant running under the same conditions provides the solar electricity as well as the fuel saving. These results show that integration of solar heat into the high pressure preheater will lead to higher conversion efficiency and higher annual solar output. The net conversion efficiency of solar heat is in the range of 33 to 34% and the economic evaluation based on cost assumptions from literature delivers LCOE values between 9 and 14.5 US ¢/kWh which is comparable to the values for large standalone CSP plants worldwide

    Hybrid high solar share gas turbine systems with innovative gas turbine cycles

    Get PDF
    In this paper results from an ongoing research project (HYGATE) are presented, which is performed to reduce the levelized cost of electricity (LCOE) and to increase the CO2 reduction potential of the solar-hybrid gas turbine plant concept (SHGT). Key improvements are the integration of thermal energy storage and the reduction of the operating temperature of the gas turbine to 950°C. As a result the solar receiver can provide the necessary temperature for solar-only operation of the plant at design point - without using the auxiliary burner. Annual performance calculations and an economic analysis of four different plant concepts were performed. Those concepts were analyzed using innovative power block processes. In general, such systems offer reliable and dispatchable power with low specific CO2 emissions. A substantial decrease of CO2 emissions has been achieved all along the four variants compared to results of a previous project [1]. Compared to the defined reference molten salt solar tower the solar-hybrid gas turbine plants as of now yield higher plant efficiencies, but have a slightly lower potential for CO2 reduction. Among the SHGT plants the variants including a bottoming Organic Rankine Cycle (SHORCC and SHORCC-R) achieve the highest efficiencies but have significantly higher LCOE, caused by the high costs of the ORC components which are not yet commercially available in the required dimensions. The solar-hybrid combined cycle plant (SHCC) and solar-hybrid gas turbine plant with quasi isothermal compression and recuperation (SHGT-ICR) perform best among the SHGT plants in terms of LCOE, and can be considered an interesting alternative to molten salt tower plants. Taking into account other factors, such as plant complexity and water consumption, an isothermal solar gas turbine plant shows the most potential advantages. However, the SHCC has the highest technological maturity and is a likely candidate for a future demonstration plant
    corecore