26 research outputs found

    Fragmentation of molecular ions in ultrafast laser pulses

    Get PDF
    Master of ScienceDepartment of PhysicsItzhak Ben-ItzhakImaging the interaction of molecular ion beams with ultrafast intense laser fields is a very powerful method to understand the fragmentation dynamics of molecules. Femtosecond laser pulses with different wavelengths and intensities are applied to dissociate and ionize molecular ions, and each resulting fragmentation channel can be studied separately by implementing a coincidence three-dimensional (3D) momentum imaging method. The work presented in this master’s report can be separated into two parts. First, the interaction between molecular ion beams and femtosecond laser pulses, in particular, the dissociation of CO[superscript]+ into C[superscript]++O, is studied. For that purpose, measurements are conducted at different laser intensities and wavelengths to investigate the possible pathways of dissociation into C[superscript]++O. The study reveals that CO[superscript]+ starts to dissociate from the quartet electronic state at low laser intensities. Higher laser intensity measurements, in which a larger number of photons can be absorbed by the molecule, show that the doublet electronic states with deeper potential wells, e.g. A [superscript]2Π, contribute to the dissociation of the molecule. In addition, the three-body fragmentation of CO[subscript]2[superscript]+ into C[superscript]++O[superscript]++O[superscript]+ is studied, and two breakup scenarios are separated using the angle between the sum and difference of the momentum vectors of two O[superscript]+ fragments. In the second part, improvements in experimental techniques are discussed. Development of a reflective telescope setup intended to increase the conversion efficiency of ultraviolet (UV) laser pulse generation is described, and the setup is used in the studies of CO[superscript]+ dissociation described in this report. The other technical study presented here is the measurement of the position dependence of timing signals picked off of a microchannel plate (MCP) surface. The experimental method is presented and significant time spread over the surface of the MCP detector is reported [1]

    Coulomb explosion imaging of polyatomic molecules after photoionization with X-rays and strong laser fields

    Get PDF
    Doctor of PhilosophyDepartment of PhysicsDaniel RollesImaging the structures of molecules, understanding the molecular dynamics in onization and dissociation processes and, most importantly, observing chemical reactions, i.e. the making and breaking of chemical bonds in real time, have become some of the most exciting topics in the atomic and molecular physics. The rapid advances of experimental tools such as synchrotron radiation light sources, free-electron lasers and continuing advances of tabletop femtosecond ultrashort lasers that provide laser pulses at a variety of wavelengths have opened new avenues for understanding the structure of matter and the dynamics of the chemical interactions. In addition, significant improvements in computational techniques and molecular dynamic simulations have provided complementary theoretical predictions on structures and chemical dynamics. The Coulomb explosion imaging method, which has been developed and applied in many studies in the last three decades, is a powerful way to study molecular structures. The method has mostly been applied to small diatomic molecules and to simple polyatomic molecules. In this thesis, Coulomb explosion imaging is applied to study the structure of isomers, molecules that have the same chemical formula but different chemical structures. Specifically, by taking inner-shell photoionization as well as strong-field ionization approaches to ionize and fragment the molecules and by using coincidence electron-ion-ion momentum imaging techniques to obtain the three-dimensional momentum of fragment ions, structures of isomers are distinguished by using the correlations among product ion momentum vectors. At first, the study aims to understand if the Coulomb explosion imaging of geometrical isomers can identify and separate cis and trans structures. Secondly, in order to extend the application of the Coulomb explosion imaging method to larger organic molecules to test the feasibility of the method for identifying structural isomers, photoionization studiesof 2,6- and 3,5-difluoroiodobenzene have been conducted. In addition, using the full three-dimensional kinematic information of multi-fold coincidence channels, breakup dynamics of both cis/trans geometric isomers and structural isomers, and in particular, sequential fragmentation dynamics of the difluoroiodobenzene isomers are studied. Furthermore, for each study, Coulomb explosion model simulations are conducted to complement the experimental results. The results of the Coulomb explosion imaging reseach in this thesis paves the way for future time-resolved Coulomb explosion imaging experiments aiming to understand the transient molecular dynamics such as photoinduced ring opening reactions and cis/trans isomerization processes in gas-phase molecules

    A Unified Mechanism on the Formation of Acenes, Helicenes, and Phenacenes in the Gas Phase.

    Get PDF
    A unified low-temperature reaction mechanism on the formation of acenes, phenacenes, and helicenes-polycyclic aromatic hydrocarbons (PAHs) that are distinct via the linear, zigzag, and ortho-condensed arrangements of fused benzene rings-is revealed. This mechanism is mediated through a barrierless, vinylacetylene mediated gas-phase chemistry utilizing tetracene, [4]phenacene, and [4]helicene as benchmarks contesting established ideas that molecular mass growth processes to PAHs transpire at elevated temperatures. This mechanism opens up an isomer-selective route to aromatic structures involving submerged reaction barriers, resonantly stabilized free-radical intermediates, and systematic ring annulation potentially yielding molecular wires along with racemic mixtures of helicenes in deep space. Connecting helicene templates to the Origins of Life ultimately changes our hypothesis on interstellar carbon chemistry

    Synthesis of Polycyclic Aromatic Hydrocarbons by Phenyl Addition-Dehydrocyclization: The Third Way.

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) represent the link between resonance-stabilized free radicals and carbonaceous nanoparticles generated in incomplete combustion processes and in circumstellar envelopes of carbon rich asymptotic giant branch (AGB) stars. Although these PAHs resemble building blocks of complex carbonaceous nanostructures, their fundamental formation mechanisms have remained elusive. By exploring these reaction mechanisms of the phenyl radical with biphenyl/naphthalene theoretically and experimentally, we provide compelling evidence on a novel phenyl-addition/dehydrocyclization (PAC) pathway leading to prototype PAHs: triphenylene and fluoranthene. PAC operates efficiently at high temperatures leading through rapid molecular mass growth processes to complex aromatic structures, which are difficult to synthesize by traditional pathways such as hydrogen-abstraction/acetylene-addition. The elucidation of the fundamental reactions leading to PAHs is necessary to facilitate an understanding of the origin and evolution of the molecular universe and of carbon in our galaxy

    Alignment, orientation, and Coulomb explosion of difluoroiodobenzene studied with the pixel imaging mass spectrometry (PImMS) camera

    Get PDF
    Citation: Amini, K., Boll, R., Lauer, A., Burt, M., Lee, J. W. L., Christensen, L., . . . Rolles, D. (2017). Alignment, orientation, and Coulomb explosion of difluoroiodobenzene studied with the pixel imaging mass spectrometry (PImMS) camera. Journal of Chemical Physics, 147(1). doi:10.1063/1.4982220Laser-induced adiabatic alignment and mixed-field orientation of 2,6-difluoroiodobenzene (C6H3F2I) molecules are probed by Coulomb explosion imaging following either near-infrared strong-field ionization or extreme-ultraviolet multi-photon inner-shell ionization using free-electron laser pulses. The resulting photoelectrons and fragment ions are captured by a double-sided velocity map imaging spectrometer and projected onto two position-sensitive detectors. The ion side of the spectrometer is equipped with a pixel imaging mass spectrometry camera, a time-stamping pixelated detector that can record the hit positions and arrival times of up to four ions per pixel per acquisition cycle. Thus, the time-of-flight trace and ion momentum distributions for all fragments can be recorded simultaneously. We show that we can obtain a high degree of one-and three-dimensional alignment and mixed-field orientation and compare the Coulomb explosion process induced at both wavelengths. © 2017 Author(s)
    corecore