16 research outputs found

    Simultaneous Determination of Rofecoxib and Tizanidine by HPTLC

    Get PDF
    Abstract: An innovative high performance thin layer chromatography method was developed and validated for simultaneous determination of rofecoxib and tizanidine from tablet dosage form. Rosiglitazone maleate was used as an internal standard. The separation was achieved using HPTLC plates (Merck #5548) precoated with silica gel 60F 254 on aluminum sheets and a mobile phase comprising of toluene: ethyl acetate: methanol: triethyl amine in volume ratio of 6:3:0.5:0.1 (v/v/v/v), with chamber saturation of 15 min. The plate was developed up to 8 cm and air dried. The plate was then scanned and quantified at 235 nm. The linearity of rofecoxib and tizanidine were in the range of 3.75 µg/spot to 11.25 µg/spot and 0.30 µg/spot to 0.90 µg/spot respectively. The limit of detection for rofecoxib and tizanidine was found to be 45.00 ng/spot and 30.00 ng/spot respectively. The limit of quantification for rofecoxib and tizanidine was found to be 135.00 ng/spot and 90.00 ng/spot respectively. The percentage assay was found between the range of 99.58% to 103.21% for rofecoxib and 98.73% to 101.55% for tizanidine respectively, whereas recovery was found between 99.97% to 100.43% for rofecoxib and 100.00% to 101.00% for tizanidine by standard addition method. The proposed method is accurate, precise and rapid for the simultaneous determination of rofecoxib and tizanidine in dosage form

    Simultaneous Determination of Aceclofenac, Paracetamol and Chlorzoxazone by HPLC in Tablet Dose Form

    Get PDF
    A simple, fast and precise reversed phase high performance liquid chromatographic method is developed for the simultaneous determination of aceclofenac, paracetamol and chlorzoxazone. Chromatographic separation of the three drugs was performed on an Intersil C18 column (250 mm × 4.6 mm, 5µm) as stationary phase with a mobile phase comprising of 10 mM potassium dihydrogen phosphate (pH adjusted to 5.55 with ammonia): acetonitrile in the ratio 60:40 (v/v) at a flow rate of 1.0 mL/min and UV detection at 205 nm. The linearity of aceclofenac, paracetamol and chlorzoxazone were in the range of 5.00-15.00 µg/µL, 25.00-75.00 µg/µL and 25.00-75.00 µg/µL respectively. The limit of detection for aceclofenac, paracetamol and chlorzoxazone was found to be 18.0 ng/mL, 22.0 ng/mL and 9.0 ng/mL respectively whereas, the limit of quantification was found to be 55 ng/mL, 65 ng/mL and 27.0 ng/mL respectively. The recovery was calculated by standard addition method. The average recovery was found to be 99.04%, 99.57% and 101.63% for aceclofenac, paracetamol and chlorzoxazone respectively. The proposed method was found to be accurate, precise and rapid for the simultaneous determination of aceclofenac, paracetamol and chlorzoxazon

    Simultaneous Determination of Aceclofenac, Paracetamol and Chlorzoxazone by HPLC in Tablet Dose Form

    No full text
    A simple, fast and precise reversed phase high performance liquid chromatographic method is developed for the simultaneous determination of aceclofenac, paracetamol and chlorzoxazone. Chromatographic separation of the three drugs was performed on an Intersil C18 column (250 mm × 4.6 mm, 5µm) as stationary phase with a mobile phase comprising of 10 mM potassium dihydrogen phosphate (pH adjusted to 5.55 with ammonia): acetonitrile in the ratio 60:40 (v/v) at a flow rate of 1.0 mL/min and UV detection at 205 nm. The linearity of aceclofenac, paracetamol and chlorzoxazone were in the range of 5.00-15.00 µg/µL, 25.00-75.00 µg/µL and 25.00-75.00 µg/µL respectively. The limit of detection for aceclofenac, paracetamol and chlorzoxazone was found to be 18.0 ng/mL, 22.0 ng/mL and 9.0 ng/mL respectively whereas, the limit of quantification was found to be 55 ng/mL, 65 ng/mL and 27.0 ng/mL respectively. The recovery was calculated by standard addition method. The average recovery was found to be 99.04%, 99.57% and 101.63% for aceclofenac, paracetamol and chlorzoxazone respectively. The proposed method was found to be accurate, precise and rapid for the simultaneous determination of aceclofenac, paracetamol and chlorzoxazon

    Surface plasmon resonance based colorimetric probe for vitamin B1 detection: Applications to bio-fluid analysis

    No full text
    This study reports simple analytical approach for thiamine (Vitamin B1) detection based on induced aggregation and alternation in colorimetric properties of gold nanoparticles (AuNPs), which was synthesized through citrate reduction approach. Furthermore, the citrate capped AuNPs are characterized by various analysing tools. The addition of thiamine persuades the aggregation of citrate-AuNPs and further leading to red to blue colour transition with decrease in absorbance intensity. The proposed method achieves good linearity with a correlation coefficient of 0.9843. By using our proposed strategy, thiamine was detected by unassisted vision as well as absorption spectroscopy. Under the most favorable condition method achieves good linear relationship between concentration range 0.01–0.8 μg mL−1 with limit of detection of 0.0067 μg mL−1. Under the premium condition, the method offers excellent selectivity towards thiamine detection in presence of different interfering species. Further practical applicability of the method was checked by using blood serum and urine sample via standard addition method. The obtained recoveries were acceptable in the range of 98.70–102.97% for added thiamine concentration. Thus, the proposed method may emerge as a target specific and highly sensitive tool towards thiamine detection

    Sequence Complexity of Amyloidogenic Regions in Intrinsically Disordered Human Proteins

    No full text
    An amyloidogenic region (AR) in a protein sequence plays a significant role in protein aggregation and amyloid formation. We have investigated the sequence complexity of AR that is present in intrinsically disordered human proteins. More than 80% human proteins in the disordered protein databases (DisProt+IDEAL) contained one or more ARs. With decrease of protein disorder, AR content in the protein sequence was decreased. A probability density distribution analysis and discrete analysis of AR sequences showed that ,8% residue in a protein sequence was in AR and the region was in average 8 residues long. The residues in the AR were high in sequence complexity and it seldom overlapped with low complexity regions (LCR), which was largely abundant in disorder proteins. The sequences in the AR showed mixed conformational adaptability towards a-helix, b-sheet/strand and coil conformations

    Prevalence, years lived with disability, and trends in anaemia burden by severity and cause, 1990–2021: findings from the Global Burden of Disease Study 2021

    No full text
    Background: Anaemia is a major health problem worldwide. Global estimates of anaemia burden are crucial for developing appropriate interventions to meet current international targets for disease mitigation. We describe the prevalence, years lived with disability, and trends of anaemia and its underlying causes in 204 countries and territories. Methods: We estimated population-level distributions of haemoglobin concentration by age and sex for each location from 1990 to 2021. We then calculated anaemia burden by severity and associated years lived with disability (YLDs). With data on prevalence of the causes of anaemia and associated cause-specific shifts in haemoglobin concentrations, we modelled the proportion of anaemia attributed to 37 underlying causes for all locations, years, and demographics in the Global Burden of Disease Study 2021. Findings: In 2021, the global prevalence of anaemia across all ages was 24·3% (95% uncertainty interval [UI] 23·9–24·7), corresponding to 1·92 billion (1·89–1·95) prevalent cases, compared with a prevalence of 28·2% (27·8–28·5) and 1·50 billion (1·48–1·52) prevalent cases in 1990. Large variations were observed in anaemia burden by age, sex, and geography, with children younger than 5 years, women, and countries in sub-Saharan Africa and south Asia being particularly affected. Anaemia caused 52·0 million (35·1–75·1) YLDs in 2021, and the YLD rate due to anaemia declined with increasing Socio-demographic Index. The most common causes of anaemia YLDs in 2021 were dietary iron deficiency (cause-specific anaemia YLD rate per 100 000 population: 422·4 [95% UI 286·1–612·9]), haemoglobinopathies and haemolytic anaemias (89·0 [58·2–123·7]), and other neglected tropical diseases (36·3 [24·4–52·8]), collectively accounting for 84·7% (84·1–85·2) of anaemia YLDs. Interpretation: Anaemia remains a substantial global health challenge, with persistent disparities according to age, sex, and geography. Estimates of cause-specific anaemia burden can be used to design locally relevant health interventions aimed at improving anaemia management and prevention. Funding: Bill & Melinda Gates Foundation

    Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020

    No full text
    Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods For this analysis, we constructed burden-weighted dose-response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15-95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15-39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0-0) and 0.603 (0.400-1.00) standard drinks per day, and the NDE varied between 0.002 (0-0) and 1.75 (0.698-4.30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0.114 (0-0.403) to 1.87 (0.500-3.30) standard drinks per day and an NDE that ranged between 0.193 (0-0.900) and 6.94 (3.40-8.30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59.1% (54.3-65.4) were aged 15-39 years and 76.9% (73.0-81.3) were male. Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol
    corecore