9 research outputs found
The Atomic Physics Underlying the Spectroscopic Analysis of Massive Stars and Supernovae
We have developed a radiative transfer code, CMFGEN, which allows us to model
the spectra of massive stars and supernovae. Using CMFGEN we can derive
fundamental parameters such as effective temperatures and surface gravities,
derive abundances, and place constraints on stellar wind properties. The last
of these is important since all massive stars are losing mass via a stellar
wind that is driven from the star by radiation pressure, and this mass loss can
substantially influence the spectral appearance and evolution of the star.
Recently we have extended CMFGEN to allow us to undertake time-dependent
radiative transfer calculations of supernovae. Such calculations will be used
to place constraints on the supernova progenitor, to place constraints on the
supernova explosion and nucleosynthesis, and to derive distances using a
physical approach called the "Expanding Photosphere Method". We describe the
assumptions underlying the code and the atomic processes involved. A crucial
ingredient in the code is the atomic data. For the modeling we require accurate
transition wavelengths, oscillator strengths, photoionization cross-sections,
collision strengths, autoionization rates, and charge exchange rates for
virtually all species up to, and including, cobalt. Presently, the available
atomic data varies substantially in both quantity and quality.Comment: 8 pages, 2 figures, Accepted for publication in Astrophysics & Space
Scienc
Dust in Supernovae and Supernova Remnants I : Formation Scenarios
Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.Peer reviewe
Astronomical Distance Determination in the Space Age: Secondary Distance Indicators
The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)
Recommended from our members
Enormous explosion energy of Type IIP SN 2017gmr with bipolar 56Ni ejecta
The unusual Type IIP SN 2017gmr is revisited in order to pinpoint the origin of its anomalous features, including the peculiar light curve after about 100 d. The hydrodynamic modelling suggests the enormous explosion energy of ≈1052 erg. We find that the light curve with the prolonged plateau/tail transition can be reproduced either in the model with a high hydrogen abundance in the inner ejecta and a large amount of radioactive 56Ni, or in the model with an additional central energy source associated with the fallback/magnetar interaction in the propeller regime. The asymmetry of the late H α emission and the reported linear polarization are reproduced by the model of the bipolar 56Ni ejecta. The similar bipolar structure of the oxygen distribution is responsible for the two-horn structure of the [O i] 6360, 6364 Å emission. The bipolar 56Ni structure along with the high explosion energy are indicative of the magneto-rotational explosion. We identify narrow high-velocity absorption features in H α and He i10 830 Å lines with their origin in the fragmented cold dense shell formed due to the outer ejecta deceleration in a confined circumstellar shell. © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
The nature of SN 1997D: low-mass progenitor and weak explosion
We analyzed the spectra and light curve of the peculiar type II-P supernova 1997D to recover ejecta parameters. The optimal hydrodynamical model of SN 1997D, which meets observational constraints at the photospheric epoch, suggests a low explosion energy of about 10"5"0 erg, ejecta mass around 6 M_sun, and presupernova radius near 85 R_sun. We confirm the previous result by Turatto et al. (1998) that the ejecta contain a very low amount of radioactive "5"6Ni (#approx#0.002 M_sun). Modelling the nebular spectrum supports the hydrodynamical model and permits us to estimate the mass of freshly synthesized oxygen (0.02-0.07 M_sun). Combined with the basic results of stellar evolution theory the obtained parameters of SN 1997D imply that the progenitor was a star from the 8-12 M_sun mass range at the main sequence. The fact that at least some progenitors from this mass range give rise to core-collapse supernovae with a low kinetic energy (#approx#10"5"0 erg) and low amount of radioactive "5"6Ni (#approx#0.002 M_sun) has no precedent and imposes important constraints on the explosion mechanism. We speculate that the galactic supernovae 1054 and 1181 could be attributed to SN 1997D-like events. (orig.)Available from TIB Hannover: RR 4697(1184) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman