63 research outputs found
Dynamic behaviour of woven bio fiber composite
The effect of weaving pattern and natural filler addition on the dynamic properties of composite structure was investigated. The reinforcement effect of plain, basket, and twill weave were compared with randomly oriented natural fiber in short form. An experimental modal analysis was used to determine the fundamental natural frequency and modal damping factor of composite structure. The results for a woven reinforced composite were compared with those of a randomly oriented short fiber composite. Reinforcement with woven form enhanced the fundamental natural frequency, while randomly oriented short fiber enhanced the damping factor of composite material. In addition, mechanical properties, such as tensile and flexural behavior, were examined to understand the effect of reinforcement on the composite material. The sisal bio fiber with woven form enhanced the properties of the composite material
Factors driving business intelligence adoption: an extended technology-organization-environment framework
Business intelligence (BI) is a vital component for businesses of all scales, offering actionable insights crucial for timely decision-making. This technology has become integral across diverse enterprises. Recognizing the factors influencing BI adoption is imperative, and this article employs the organization, complexity, knowledge, technology, user perception and experience, economic, environmental, and social (OCKTUEES) framework to identify key aspects. Building upon the TOE framework, it pinpoints significant variables, emphasizing the importance of factors like user perception and experience, technology, social, economical, and environmental. Employing structural equation modelling on primary data yields actionable insights to address BI adoption challenges. Analysis reveals the user perception and experience, technology, social, economic, and environmental as the top factors. However, the organization appears vulnerable, necessitating a mitigation strategy for successful BI adoption. The study predicts insignificant variables requiring mitigation, such as high costs, inadequate resources, organizational size, security and privacy concerns, risk of open-source adoption, and perception of analytics impacting jobs. This research aids those navigating the BI implementation journey
Effect of Moisture Absorption Behavior on Mechanical Properties of Basalt Fibre Reinforced Polymer Matrix Composites
The study of mechanical properties of fibre reinforced polymeric materials under different environmental conditions is much important. This is because materials with superior ageing resistance can be satisfactorily durable. Moisture effects in fibre reinforced plastic composites have been widely studied. Basalt fibre reinforced unsaturated polyester resin composites were subjected to water immersion tests using both sea and normal water in order to study the effects of water absorption behavior on mechanical properties. Composites specimens containing woven basalt, short basalt, and alkaline and acid treated basalt fibres were prepared. Water absorption tests were conducted by immersing specimens in water at room temperature for different time periods till they reached their saturation state. The tensile, flexural, and impact properties of water immersed specimens were conducted and compared with dry specimens as per the ASTM standard. It is concluded that the water uptake of basalt fibre is considerable loss in the mechanical properties of the composites.</jats:p
Enhancing carbon fiber composites with fish scale biochar for superior strength and environmental sustainability
There is a pressing need to develop carbon fiber composites with sustainable fillers that enhance their strength without increasing costs or environmental impact. Such advancements would not only improve performance in high-stress applications but also align with global sustainability goals by utilizing eco-friendly materials and reducing waste. This study explores the use of biochar derived from fish scales as a sustainable filler material in carbon fiber epoxy composites. The biochar was produced through pyrolysis and incorporated into the composites at various weight percentages (0 %, 1 %, 3 %, 6 %, 9 %, 12 %, and 15 %). Mechanical properties, including tensile strength, flexural strength, impact strength, and interlaminar shear strength, were evaluated according to ASTM standards. The results demonstrated that the incorporation of biochar significantly improved the mechanical properties of the composites, with optimal performance observed at 9 % biochar content. At this concentration, the tensile strength increased by 60.02 %–674.21 MPa, the tensile modulus by 74.96 % to 46.05 GPa, the flexural modulus by 58.32 GPa, and the impact strength reached 102.32 kJ/m2. It was found that achieving the optimal performance requires an optimal weight percentage of biochar. This study highlights the potential of fish scale-derived biochar as an effective and sustainable filler material for enhancing the performance of carbon fiber composites
The Influence of Nanographite Addition on the Compaction Process and Properties of AISI 316L Sintered Stainless Steel
This paper presents the effect of graphite addition on the pressing process and selected mechanical properties of AISI 316L austenitic stainless steel. The graphite powders used in this study differed in the value of the specific surface area of the particles, which were 15 (micropowder), 350, and 400 m2/g (nanopowder). Mixtures with the addition of lubricants—stearic acid and Kenolube—were also created, for comparison purposes. The scope of the tests included compressibility of blends, measurements of the ejection force while removing the compacts from the die, micro-structural studies, a static tensile test, a three-point bending test, a Kc impact test, Rockwell hardness, and Vickers microhardness measurements. The study demonstrated that the addition of graphite nanopowder to the studied steel acts as a lubricant, providing a significant improvement in lubricity during the pressing process. Moreover, the addition of nanographite allowed for a significant increase in the mechanical properties studied in this work; it was observed that, for the sinters made of mixtures with a higher graphite content and with a large specific surface area of its particles, better values for the tested properties were obtained
The Influence of Nanographite Addition on the Compaction Process and Properties of AISI 316L Sintered Stainless Steel
This paper presents the effect of graphite addition on the pressing process and selected mechanical properties of AISI 316L austenitic stainless steel. The graphite powders used in this study differed in the value of the specific surface area of the particles, which were 15 (micropowder), 350, and 400 m2/g (nanopowder). Mixtures with the addition of lubricants—stearic acid and Kenolube—were also created, for comparison purposes. The scope of the tests included compressibility of blends, measurements of the ejection force while removing the compacts from the die, micro-structural studies, a static tensile test, a three-point bending test, a Kc impact test, Rockwell hardness, and Vickers microhardness measurements. The study demonstrated that the addition of graphite nanopowder to the studied steel acts as a lubricant, providing a significant improvement in lubricity during the pressing process. Moreover, the addition of nanographite allowed for a significant increase in the mechanical properties studied in this work; it was observed that, for the sinters made of mixtures with a higher graphite content and with a large specific surface area of its particles, better values for the tested properties were obtained.</jats:p
The Influence of Nanographite Addition on the Compaction Process and Properties of AISI 316L Sintered Stainless Steel
This paper presents the effect of graphite addition on the pressing process and selected mechanical properties of AISI 316L austenitic stainless steel. The graphite powders used in this study differed in the value of the specific surface area of the particles, which were 15 (micropowder), 350, and 400 m2/g (nanopowder). Mixtures with the addition of lubricants—stearic acid and Kenolube—were also created, for comparison purposes. The scope of the tests included compressibility of blends, measurements of the ejection force while removing the compacts from the die, micro-structural studies, a static tensile test, a three-point bending test, a Kc impact test, Rockwell hardness, and Vickers microhardness measurements. The study demonstrated that the addition of graphite nanopowder to the studied steel acts as a lubricant, providing a significant improvement in lubricity during the pressing process. Moreover, the addition of nanographite allowed for a significant increase in the mechanical properties studied in this work; it was observed that, for the sinters made of mixtures with a higher graphite content and with a large specific surface area of its particles, better values for the tested properties were obtained
Numerical Investigation of Forced Convection Conjugate Heat Transfer from Offset Square Cylinders Placed in a Confined Channel Covered by Solid Wall
The Variable Frequency Conductivity of Geopolymers during the Long Agieng Period
The variable frequency conductivity was applied to characterize the process of solidification of geopolymers based on fly ash with sand additives. XRD qualitative and quantitative analysis, porosity measurements, and sorption analysis of specific surface area were performed. The conductivity was correlated with porosity and specific surface area of geopolymer concretes. Both values of conductivity, real and imaginary parts, decreased during polymerization processing time. Characteristic maximum on graphs describing susceptance vs. frequency curve was observed. The frequency of this maximum depends on time of polymerization and ageing, and can also indicate porosity of material. Low-porous geopolymer concrete shows both low-conductivity values, and susceptance maximum frequency peak occurs more in the higher frequencies than in high-porous materials.</jats:p
The Variable Frequency Conductivity of Geopolymers during the Long Agieng Period
The variable frequency conductivity was applied to characterize the process of solidification of geopolymers based on fly ash with sand additives. XRD qualitative and quantitative analysis, porosity measurements, and sorption analysis of specific surface area were performed. The conductivity was correlated with porosity and specific surface area of geopolymer concretes. Both values of conductivity, real and imaginary parts, decreased during polymerization processing time. Characteristic maximum on graphs describing susceptance vs. frequency curve was observed. The frequency of this maximum depends on time of polymerization and ageing, and can also indicate porosity of material. Low-porous geopolymer concrete shows both low-conductivity values, and susceptance maximum frequency peak occurs more in the higher frequencies than in high-porous materials
- …
