6 research outputs found
Interactive Effect of Learning Rate and Batch Size to Implement Transfer Learning for Brain Tumor Classification
For classifying brain tumors with small datasets, the knowledge-based transfer learning (KBTL) approach has performed very well in attaining an optimized classification model. However, its successful implementation is typically affected by different hyperparameters, specifically the learning rate (LR), batch size (BS), and their joint influence. In general, most of the existing research could not achieve the desired performance because the work addressed only one hyperparameter tuning. This study adopted a Cartesian product matrix-based approach, to interpret the effect of both hyperparameters and their interaction on the performance of models. To evaluate their impact, 56 two-tuple hyperparameters from the Cartesian product matrix were used as inputs to perform an extensive exercise, comprising 504 simulations for three cutting-edge architecture-based pre-trained Deep Learning (DL) models, ResNet18, ResNet50, and ResNet101. Additionally, the impact was also assessed by using three well-known optimizers (solvers): SGDM, Adam, and RMSProp. The performance assessment showed that the framework is an efficient framework to attain optimal values of two important hyperparameters (LR and BS) and consequently an optimized model with an accuracy of 99.56%. Further, our results showed that both hyperparameters have a significant impact individually as well as interactively, with a trade-off in between. Further, the evaluation space was extended by using the statistical ANOVA analysis to validate the main findings. F-test returned with p < 0.05, confirming that both hyperparameters not only have a significant impact on the model performance independently, but that there exists an interaction between the hyperparameters for a combination of their levels
Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial
Background Tranexamic acid reduces surgical bleeding and decreases mortality in patients with traumatic extracranial bleeding. Intracranial bleeding is common after traumatic brain injury (TBI) and can cause brain herniation and death. We aimed to assess the effects of tranexamic acid in patients with TBI. Methods This randomised, placebo-controlled trial was done in 175 hospitals in 29 countries. Adults with TBI who were within 3 h of injury, had a Glasgow Coma Scale (GCS) score of 12 or lower or any intracranial bleeding on CT scan, and no major extracranial bleeding were eligible. The time window for eligibility was originally 8 h but in 2016 the protocol was changed to limit recruitment to patients within 3 h of injury. This change was made blind to the trial data, in response to external evidence suggesting that delayed treatment is unlikely to be effective. We randomly assigned (1:1) patients to receive tranexamic acid (loading dose 1 g over 10 min then infusion of 1 g over 8 h) or matching placebo. Patients were assigned by selecting a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was head injury-related death in hospital within 28 days of injury in patients treated within 3 h of injury. We prespecified a sensitivity analysis that excluded patients with a GCS score of 3 and those with bilateral unreactive pupils at baseline. All analyses were done by intention to treat. This trial was registered with ISRCTN (ISRCTN15088122), ClinicalTrials.gov (NCT01402882), EudraCT (2011-003669-14), and the Pan African Clinical Trial Registry (PACTR20121000441277). Results Between July 20, 2012, and Jan 31, 2019, we randomly allocated 12 737 patients with TBI to receive tranexamic acid (6406 [50·3%] or placebo [6331 [49·7%], of whom 9202 (72·2%) patients were treated within 3 h of injury. Among patients treated within 3 h of injury, the risk of head injury-related death was 18·5% in the tranexamic acid group versus 19·8% in the placebo group (855 vs 892 events; risk ratio [RR] 0·94 [95% CI 0·86-1·02]). In the prespecified sensitivity analysis that excluded patients with a GCS score of 3 or bilateral unreactive pupils at baseline, the risk of head injury-related death was 12·5% in the tranexamic acid group versus 14·0% in the placebo group (485 vs 525 events; RR 0·89 [95% CI 0·80-1·00]). The risk of head injury-related death reduced with tranexamic acid in patients with mild-to-moderate head injury (RR 0·78 [95% CI 0·64-0·95]) but not in patients with severe head injury (0·99 [95% CI 0·91-1·07]; p value for heterogeneity 0·030). Early treatment was more effective than was later treatment in patients with mild and moderate head injury (p=0·005) but time to treatment had no obvious effect in patients with severe head injury (p=0·73). The risk of vascular occlusive events was similar in the tranexamic acid and placebo groups (RR 0·98 (0·74-1·28). The risk of seizures was also similar between groups (1·09 [95% CI 0·90-1·33]). Interpretation Our results show that tranexamic acid is safe in patients with TBI and that treatment within 3 h of injury reduces head injury-related death. Patients should be treated as soon as possible after injury. Funding National Institute for Health Research Health Technology Assessment, JP Moulton Charitable Trust, Department of Health and Social Care, Department for International Development, Global Challenges Research Fund, Medical Research Council, and Wellcome Trust (Joint Global Health Trials scheme)
IPTV using DM642 Multimedia Processor and Bluetooth
Abstract. The main object of the work is to develop embedded system for IPTV. For this venture, the Real Time Multimedia System is designed to acquire the video streaming through different video servers over Internet Protocol (TCP/IP-Ethernet). In this work the normal TV is used and converted to IPTV through the development of multimedia processor based Real Time System. The video streaming software are also used on Video Server which transmits video over TCP/IP and the video is displayed using DM642 media processor based embedded system. The Bluetooth technology is used to change the channel from any Bluetooth enabled mobile phone. For this purpose the Bluetooth HCI controller based system is also designed. The user can select the channel using his Bluetooth enabled mobile phone and sends the request to the multimedia processor which transmits the request to the Video Server and displays the desired channel. The acquired video is converted into IP packets and transmitted to the media processor through Ethernet connection
Prioritizing critical success factors for sustainable energy sector in China: A DEMATEL approach
Sustainable strategies like Corporate Social Responsibility (CSR) have become an essential requirement for the energy sector to be practiced across their business activities. Many studies addressed CSR-related strategies but did not examine their critical success factors (CSFs) on regional bases. Therefore, the world's largest energy consumer, China, has been chosen to analyze the critical success factors of corporate social responsibility specific to energy sector. In this study, literature is reviewed for the collection of CSFs, validated and evaluated by experts and case industrial managers situated in China. For the analysis and visualization of influential CSFs to promote CSR, ‘Decision Making Trial and Evaluation Laboratory’ (DEMATEL) method was used in this study. The paper highlights that energy companies of China should focus on the most influential success factors for CSR implementation by categorizing CSFs into cause and effect group. The authors' best knowledge is the first study that examined the CSFs related to the energy sector on a regional basis. This study provides initial insights into the strategic process of CSR implementation. This work proposes a decision framework to assist managers of the Chinese energy sector to further extend strong roots in the CSR implementation
Interactive Effect of Learning Rate and Batch Size to Implement Transfer Learning for Brain Tumor Classification
For classifying brain tumors with small datasets, the knowledge-based transfer learning (KBTL) approach has performed very well in attaining an optimized classification model. However, its successful implementation is typically affected by different hyperparameters, specifically the learning rate (LR), batch size (BS), and their joint influence. In general, most of the existing research could not achieve the desired performance because the work addressed only one hyperparameter tuning. This study adopted a Cartesian product matrix-based approach, to interpret the effect of both hyperparameters and their interaction on the performance of models. To evaluate their impact, 56 two-tuple hyperparameters from the Cartesian product matrix were used as inputs to perform an extensive exercise, comprising 504 simulations for three cutting-edge architecture-based pre-trained Deep Learning (DL) models, ResNet18, ResNet50, and ResNet101. Additionally, the impact was also assessed by using three well-known optimizers (solvers): SGDM, Adam, and RMSProp. The performance assessment showed that the framework is an efficient framework to attain optimal values of two important hyperparameters (LR and BS) and consequently an optimized model with an accuracy of 99.56%. Further, our results showed that both hyperparameters have a significant impact individually as well as interactively, with a trade-off in between. Further, the evaluation space was extended by using the statistical ANOVA analysis to validate the main findings. F-test returned with p < 0.05, confirming that both hyperparameters not only have a significant impact on the model performance independently, but that there exists an interaction between the hyperparameters for a combination of their levels
Understanding the neuroprotective effect of tranexamic acid: an exploratory analysis of the CRASH-3 randomised trial
Background: The CRASH-3 trial hypothesised that timely tranexamic acid (TXA) treatment might reduce deaths from intracranial bleeding after traumatic brain injury (TBI). To explore the mechanism of action of TXA in TBI, we examined the timing of its effect on death. Methods: The CRASH-3 trial randomised 9202 patients within 3 h of injury with a GCS score ≤ 12 or intracranial bleeding on CT scan and no significant extracranial bleeding to receive TXA or placebo. We conducted an exploratory analysis of the effects of TXA on all-cause mortality within 24 h of injury and within 28 days, excluding patients with a GCS score of 3 or bilateral unreactive pupils, stratified by severity and country income. We pool data from the CRASH-2 and CRASH-3 trials in a one-step fixed effects individual patient data meta-analysis. Results: There were 7637 patients for analysis after excluding patients with a GCS score of 3 or bilateral unreactive pupils. Of 1112 deaths, 23.3% were within 24 h of injury (early deaths). The risk of early death was reduced with TXA (112 (2.9%) TXA group vs 147 (3.9%) placebo group; risk ratio [RR] RR 0.74, 95% CI 0.58–0.94). There was no evidence of heterogeneity by severity (p = 0.64) or country income (p = 0.68). The risk of death beyond 24 h of injury was similar in the TXA and placebo groups (432 (11.5%) TXA group vs 421 (11.7%) placebo group; RR 0.98, 95% CI 0.69–1.12). The risk of death at 28 days was 14.0% in the TXA group versus 15.1% in the placebo group (544 vs 568 events; RR 0.93, 95% CI 0.83–1.03). When the CRASH-2 and CRASH-3 trial data were pooled, TXA reduced early death (RR 0.78, 95% CI 0.70–0.87) and death within 28 days (RR 0.88, 95% CI 0.82–0.94). Conclusions: Tranexamic acid reduces early deaths in non-moribund TBI patients regardless of TBI severity or country income. The effect of tranexamic acid in patients with isolated TBI is similar to that in polytrauma. Treatment is safe and even severely injured patients appear to benefit when treated soon after injury. Trial registration: ISRCTN15088122, registered on 19 July 2011; NCT01402882, registered on 26 July 2011