4 research outputs found
Adaptive locomotion of artificial microswimmers
Bacteria can exploit mechanics to display remarkable plasticity in response
to locally changing physical and chemical conditions. Compliant structures play
a striking role in their taxis behavior, specifically for navigation inside
complex and structured environments. Bioinspired mechanisms with rationally
designed architectures capable of large, nonlinear deformation present
opportunities for introducing autonomy into engineered small-scale devices.
This work analyzes the effect of hydrodynamic forces and rheology of local
surroundings on swimming at low Reynolds number, identifies the challenges and
benefits of utilizing elastohydrodynamic coupling in locomotion, and further
develops a suite of machinery for building untethered microrobots with
self-regulated mobility. We demonstrate that coupling the structural and
magnetic properties of artificial microswimmers with the dynamic properties of
the fluid leads to adaptive locomotion in the absence of on-board sensors
Adaptive locomotion of artificial microswimmers.
Bacteria can exploit mechanics to display remarkable plasticity in response to locally changing physical and chemical conditions. Compliant structures play a notable role in their taxis behavior, specifically for navigation inside complex and structured environments. Bioinspired mechanisms with rationally designed architectures capable of large, nonlinear deformation present opportunities for introducing autonomy into engineered small-scale devices. This work analyzes the effect of hydrodynamic forces and rheology of local surroundings on swimming at low Reynolds number, identifies the challenges and benefits of using elastohydrodynamic coupling in locomotion, and further develops a suite of machinery for building untethered microrobots with self-regulated mobility. We demonstrate that coupling the structural and magnetic properties of artificial microswimmers with the dynamic properties of the fluid leads to adaptive locomotion in the absence of on-board sensors.ER
Motile-Cilia-Mediated Flow Improves Sensitivity and Temporal Resolution of Olfactory Computations
Motile cilia are actively beating hair-like structures that cover the surface of multiple epithelia. The flow that ciliary beating generates is utilized for diverse functions and depends on the spatial location and biophysical properties of cilia. Here we show that the motile cilia in the nose of aquatic vertebrates are spatially organized and stably beat with an asymmetric pattern, resulting in a robust and stereotypical flow around the nose. Our results demonstrate that these flow fields attract odors to the nose pit and facilitate detection of odors by the olfactory system in stagnant environments. Moreover, we show that ciliary beating quickly exchanges the content of the nose, thereby improving the temporal resolution of the olfactory system for detecting dynamic changes of odor plumes in turbulent environments. Altogether, our work unravels a central function of ciliary beating for generating flow fields that increase the sensitivity and the temporal resolution of olfactory computations in the vertebrate brain