35 research outputs found

    Stress field analysis around optical fiber embedded in composite laminae under transverse loading

    Get PDF
    U ovome radu analiziran je uticaj ugrađenog optičkog vlakna na naponsko stanje transferzalno opterećene kompozitne lamine. Ugrađeno optičko vlakno ima primetan uticaj na naponsko polje kompozitne lamine. Vrednosti komponentnih napona u lamini sa ugrađenim optičkim vlaknom imaju i do 40% veće vrednosti od nominalnih. Za razmatrani slučaj opterećenja optičko vlakno ugrađeno u kompozitnu laminu jeste generator primetnih ali ne i značajnih koncentracija napona u poređenju sa onima koje, na primer, mogu da se jave usled geometrije oblika.The influence of embedded optical fiber on stress state of transversally loaded composite laminae was analyzed in this paper. The optical fiber interaction with the host material (composite) has noticeable effect on the stress field of laminae. For considered load case, values of the component stresses in laminae with embedded optical fiber have values up to 40% higher than the nominal ones. For the observed loading scenario, optical fibers are acting as generators of evident but not significant stress, comparing to the stress concentrations that could arise, for instance, as a consequence of the shape geometry

    Modeling of the matrix porosity influence on the elastic properties of particulate biocomposites

    Get PDF
    Porozni materijali se koriste za široki spektar inženjerskih struktura napravljenih na bazi keramike, poroznih legura sa memorijskim efektom, penastih struktura, termički zaštitnih filmova. U skorije vreme primena poroznih biokompozita u inženjerstvu tvrdih tkiva kao i implanata kod koštanih defekata privlači posebnu pažnju. Uticaj matrične poroznosti na karakteristike elastičnosti čestičnih biokompozita analiziran je primenom metode konačnih elemenata upotrebom dvofaznog i trofaznog modela napravljenog na bazi reprezentativnog zapreminskog elementa - RZE. Razvijen je trofazni model RZE sa čestičnim ojačanjem raspoređenim u površinski centrirano kubnom rasporedu sa matričnom poroznošću oblika sfere, čiji su rezultati upoređeni sa jednostavnim analitičkom modelima. Primećeno je da matrična poroznost značajno utiče na karakteristike elastičnosti ovih vrsta kompozita. Rezultati dobijeni na osnovu dvofaznog modela imaju više vrednosti od onih dobijenih na osnovu trofaznog modela u skoro celom analiziranom opsegu usled fizičke granice za zapreminski udeo poroziteta kod trofaznog modela koja je očigledno određena vrednošću zapreminskog udela čestice ojačanja.For a wide range of engineering structures such as ceramics, porous shape memory alloys, foam-like structures and thermal spray deposits, porous materials have been used. Recently, porous biocomposites for the applications to bone implants and hard tissue engineering have become increasingly important. The effect of matrix porosity on the elastic properties of particulate biocomposite was studied by two-and three-phase unit cell finite element models. A 3D FCC unit cell model of particulate composite with included matrix porosity is developed and compared with the simple theoretical models. It is found that the matrix porosity has noticeable influence on the composite elastic properties. The two-phase predictions overestimate the three-phase ones because of the physical threshold for three-phase model determined by the particle content

    Modeling of the matrix porosity influence on the elastic properties of particulate biocomposites

    Get PDF
    Porozni materijali se koriste za široki spektar inženjerskih struktura napravljenih na bazi keramike, poroznih legura sa memorijskim efektom, penastih struktura, termički zaštitnih filmova. U skorije vreme primena poroznih biokompozita u inženjerstvu tvrdih tkiva kao i implanata kod koštanih defekata privlači posebnu pažnju. Uticaj matrične poroznosti na karakteristike elastičnosti čestičnih biokompozita analiziran je primenom metode konačnih elemenata upotrebom dvofaznog i trofaznog modela napravljenog na bazi reprezentativnog zapreminskog elementa - RZE. Razvijen je trofazni model RZE sa čestičnim ojačanjem raspoređenim u površinski centrirano kubnom rasporedu sa matričnom poroznošću oblika sfere, čiji su rezultati upoređeni sa jednostavnim analitičkom modelima. Primećeno je da matrična poroznost značajno utiče na karakteristike elastičnosti ovih vrsta kompozita. Rezultati dobijeni na osnovu dvofaznog modela imaju više vrednosti od onih dobijenih na osnovu trofaznog modela u skoro celom analiziranom opsegu usled fizičke granice za zapreminski udeo poroziteta kod trofaznog modela koja je očigledno određena vrednošću zapreminskog udela čestice ojačanja.For a wide range of engineering structures such as ceramics, porous shape memory alloys, foam-like structures and thermal spray deposits, porous materials have been used. Recently, porous biocomposites for the applications to bone implants and hard tissue engineering have become increasingly important. The effect of matrix porosity on the elastic properties of particulate biocomposite was studied by two-and three-phase unit cell finite element models. A 3D FCC unit cell model of particulate composite with included matrix porosity is developed and compared with the simple theoretical models. It is found that the matrix porosity has noticeable influence on the composite elastic properties. The two-phase predictions overestimate the three-phase ones because of the physical threshold for three-phase model determined by the particle content

    Analiza formiranja PVB-SiO2 nanokompozitnih vlakana pomoću elektrospining procesa

    Get PDF
    The poly (vinyl butyral)-silica (PVB-SiO2) nanofibers were obtained by the electrospinning process. The experiments were carried out with PVB solution in concentration of 10 wt.% where ethanol was used as the solvent. The silica nanoparticles were added in the solution in different contents of 1, 3 and 5 wt.% SiO2 and nanoparticles were modified with γ-aminopropyltriethoxysilane (AMEO silane). The impacts of the parameters of the electrospinning process and the silica nanoparticles on the produced PVB-SiO2 nanocomposite fibers were tested. The structures of the PVB-SiO2 nanocomposite fibers were investigated using optical microscopy and scanning electron microscopy (SEM). The morphology and distribution of the resulting nanofibers were analyzed using the software Image-Pro Plus. .Poli (vinil butiral)-silika (PVB-SiO2) nanovlakna su dobijena metodom elektrospininga. Eksperimenti su izvedeni u rastvoru 10 mas.% PVB-a u etanolu koji je korišćen kao rastvarač. Nanočestice silike su dodate sa različitim sadržajem od 1, 3 i 5 mas.% SiO2 i modifikovane γ-aminopropiltrietoksi silanom (AMEO silanom). Istražen je uticaj procesnih parametara elektrospininga na nanokompozitna vlakna PVB-SiO2. Struktura PVB-SiO2 nanokompozitnih vlakana je proučavana pomoću optičke mikroskopije i skenirajuće elektronske mikroskopije (SEM). Morfologija proizvedenih nanokompozitnih vlakana i njihova raspodela je analizirana u Image Pro Plus softveru.

    Biomaterijali

    Get PDF
    Početak XXI veka nesumnjivo je obeležen interdisciplinarnim i multidisciplinarnim naporima istraživača u različitim oblastima nauke. Jedna od najizrazitijih tendencija ovog tipa uočava se u biomedicinskim istraživanjima, gde se združuju napori lekara, biologa, genetičara i biohemičara, s jedne strane, i biofizičara i inženjera, s druge strane – sa ciljem dubljeg razumevanja zdravlja i bolesti, i primene ovih saznanja u biomedicinskoj praksi, tako važnoj u svakodnevnom životu ljudi.Kao rezultat ovih svetskih trendova, u Srbiji već više godina na nekoliko fakulteta postoji nastava iz oblasti biomedicinskog inženjerstva, sa ciljem da osposobi inženjere ovih usmerenja za multidisciplinarno povezivanje znanja iz oblasti tehnike sa biomedicinskim znanjima. Jedan od bazičnih predmeta ovih usmerenja jesu Biomaterijali, kojima je i posvećen naš udžbenik, čiji je cilj da predstavi pregled teorije i prakse biomaterijala u biomedicinskoj nauci.Nauka o biomaterijalima je nesumnjivo najmultidisciplinarnija od svih nauka, jer zahteva ovladavanje znanjima iz mnogih oblasti nauke i tehnologije, inženjerstva i medicine, kako bi naučnici iz oblasti biomaterijala mogli da se uhvate u koštac sa ovom profesijom. Zato posle uvodnog dela, udžbenik iz Biomaterijala sadrži četiri celine: (I) Osnovni biomedicinski koncepti i reakcije organizma na biomaterijale, (II) Struktura, fizičko-mehanička karakterizacija i modeliranje biomaterijala i tkiva, (III) Savremeni biomaterijali i tehnologije, (IV) Perspektive biomaterijala i tehnologija, iza kojih slede Zadaci sa rešenjima, Ispitna test pitanja i Ispitna teorijska pitanja, koji pomažu studentima da lakše savladaju veoma obimno i kompleksno gradivo. Na kraju svakog poglavlja data su pitanja za rekapitulaciju, kao i spisak dopunske literature za opcionu detaljniju obradu pojedinih oblasti.Grupa od dvadeset četiri profesionalca sa univerziteta i naučnih instituta, pod okriljem Instituta tehničkih nauka Srpske akademije nauka i umetnosti, Beograd, i Društva za istraživanje materijala Srbije (MRS Srbija) doprinela je pisanju ovog kapitalnog udžbenika o biomaterijalima, prvog do sada na srpskom jeziku. Mada uključivanje veće grupe autora nužno dovodi do stilske neujednačenosti, ipak je oblast biomaterijala toliko multidisciplinarna da je ovakav pristup bio neophodan, kako uostalom pokazuju slična svetska iskustva sa uključivanjem i preko pedeset autora. Ipak urednici su se potrudili da koliko je to moguće stilski i pedagoški ujednače udžbenik, kako bi bio korisna literatura za sve studente diplomskih, master i doktorskih studija iz biomedicinskog inženjerstva u Srbiji i okruženju

    Biomaterijali

    Get PDF
    Početak XXI veka nesumnjivo je obeležen interdisciplinarnim i multidisciplinarnim naporima istraživača u različitim oblastima nauke. Jedna od najizrazitijih tendencija ovog tipa uočava se u biomedicinskim istraživanjima, gde se združuju napori lekara, biologa, genetičara i biohemičara, s jedne strane, i biofizičara i inženjera, s druge strane – sa ciljem dubljeg razumevanja zdravlja i bolesti, i primene ovih saznanja u biomedicinskoj praksi, tako važnoj u svakodnevnom životu ljudi.Kao rezultat ovih svetskih trendova, u Srbiji već više godina na nekoliko fakulteta postoji nastava iz oblasti biomedicinskog inženjerstva, sa ciljem da osposobi inženjere ovih usmerenja za multidisciplinarno povezivanje znanja iz oblasti tehnike sa biomedicinskim znanjima. Jedan od bazičnih predmeta ovih usmerenja jesu Biomaterijali, kojima je i posvećen naš udžbenik, čiji je cilj da predstavi pregled teorije i prakse biomaterijala u biomedicinskoj nauci.Nauka o biomaterijalima je nesumnjivo najmultidisciplinarnija od svih nauka, jer zahteva ovladavanje znanjima iz mnogih oblasti nauke i tehnologije, inženjerstva i medicine, kako bi naučnici iz oblasti biomaterijala mogli da se uhvate u koštac sa ovom profesijom. Zato posle uvodnog dela, udžbenik iz Biomaterijala sadrži četiri celine: (I) Osnovni biomedicinski koncepti i reakcije organizma na biomaterijale, (II) Struktura, fizičko-mehanička karakterizacija i modeliranje biomaterijala i tkiva, (III) Savremeni biomaterijali i tehnologije, (IV) Perspektive biomaterijala i tehnologija, iza kojih slede Zadaci sa rešenjima, Ispitna test pitanja i Ispitna teorijska pitanja, koji pomažu studentima da lakše savladaju veoma obimno i kompleksno gradivo. Na kraju svakog poglavlja data su pitanja za rekapitulaciju, kao i spisak dopunske literature za opcionu detaljniju obradu pojedinih oblasti.Grupa od dvadeset četiri profesionalca sa univerziteta i naučnih instituta, pod okriljem Instituta tehničkih nauka Srpske akademije nauka i umetnosti, Beograd, i Društva za istraživanje materijala Srbije (MRS Srbija) doprinela je pisanju ovog kapitalnog udžbenika o biomaterijalima, prvog do sada na srpskom jeziku. Mada uključivanje veće grupe autora nužno dovodi do stilske neujednačenosti, ipak je oblast biomaterijala toliko multidisciplinarna da je ovakav pristup bio neophodan, kako uostalom pokazuju slična svetska iskustva sa uključivanjem i preko pedeset autora. Ipak urednici su se potrudili da koliko je to moguće stilski i pedagoški ujednače udžbenik, kako bi bio korisna literatura za sve studente diplomskih, master i doktorskih studija iz biomedicinskog inženjerstva u Srbiji i okruženju

    Estimation of elastic properties of a particulate polymer composite using a face-centered cubic FE model

    No full text
    A three-dimensional (31)) finite element (FE) unit cell model is applied to studies on the elastic properties of ceramic spherical particle-polymer composite. In this model, hydroxyapatite particles (HAp) are assumed to be spherical and are arranged on a face-centered cubic (FCC) array in poly-L-lactide (PLLA) matrix surrounding. The three dimensionality of the proposed model enables simulation of elastic properties as well as developed stress states. The FE calculations provide estimates of compressive elastic modulus, shear modulus, Poisson's ratio and stress state of the composite for a range of particle volume fractions. The FCC unit cell FE models are evaluated by comparison to available experimental results, simple cubic (SC) unit cell FE calculations and Halpin-Tsai equations. In applying unit cell models for predicting elastic properties of particle-filled composites, the FCC arrangement can be observed to be more accurate compared with the SC arrangement

    Calculation of elasticity modulus of particulate composite biomaterials using finite element method

    No full text
    Na osnovu usvojenog numeričkog modela, primenom metode konačnih elemenata (MKE), analiziran je uticaj oblika, zapreminskog udela i rasporeda keramičkih čestica (HAp) u polimernoj matrici (PLLA) na modul elastičnosti kompozita. Razmatrana su tri oblika i dva rasporeda čestica u matrici. Izvršeno je poređenje tako dobijenih rezultata sa poluempirijskom metodom Halpin-Tsai i eksperimentalnim podacima. Rezultati istraživanja pokazuju da Jangov modul elastičnosti ne zavisi mnogo od oblika čestice. Sa druge strane, raspored čestica značajno utiče na modul elastičnosti (krutost) kompozita. Primećuje se da površinsko centrirani kubni (FCC) raspored čestica oblika sfere daje rezultate koji su najpribližniji eksperimentalnim podacima.The influence of particle geometry, volume fraction and particle distribution on the modulus of elasticity of a hydroxyapatite (HAp) particulate reinforced polymer (poly -L-lactide) matrix composite biomaterial was investigated through finite element (FE) analysis. Three various shapes and two types of particle distribution were considered. Calculated stiffness values from FE analysis were compared to the experimental results available in the literature and with predictions from the semi-empirical Halpin-Tsai method. The compressive Young's modulus was found to be slightly dependent on particle shape, but very sensitive to volume fraction and particle distribution. Comparisons of available experimental data of the HAp/PLLA composites with the FE model results of spherical particles with face centered cubic (FCC) array, give very good agreement

    Calculation of elasticity modulus of particulate composite biomaterials using finite element method

    No full text
    Na osnovu usvojenog numeričkog modela, primenom metode konačnih elemenata (MKE), analiziran je uticaj oblika, zapreminskog udela i rasporeda keramičkih čestica (HAp) u polimernoj matrici (PLLA) na modul elastičnosti kompozita. Razmatrana su tri oblika i dva rasporeda čestica u matrici. Izvršeno je poređenje tako dobijenih rezultata sa poluempirijskom metodom Halpin-Tsai i eksperimentalnim podacima. Rezultati istraživanja pokazuju da Jangov modul elastičnosti ne zavisi mnogo od oblika čestice. Sa druge strane, raspored čestica značajno utiče na modul elastičnosti (krutost) kompozita. Primećuje se da površinsko centrirani kubni (FCC) raspored čestica oblika sfere daje rezultate koji su najpribližniji eksperimentalnim podacima.The influence of particle geometry, volume fraction and particle distribution on the modulus of elasticity of a hydroxyapatite (HAp) particulate reinforced polymer (poly -L-lactide) matrix composite biomaterial was investigated through finite element (FE) analysis. Three various shapes and two types of particle distribution were considered. Calculated stiffness values from FE analysis were compared to the experimental results available in the literature and with predictions from the semi-empirical Halpin-Tsai method. The compressive Young's modulus was found to be slightly dependent on particle shape, but very sensitive to volume fraction and particle distribution. Comparisons of available experimental data of the HAp/PLLA composites with the FE model results of spherical particles with face centered cubic (FCC) array, give very good agreement

    Surface characterisation of PLLA polymer in HAp/PLLA biocomposite material by means of nanoindentation and artificial neural networks

    No full text
    In this paper, the mechanical properties of polymer matrix phase (modulus of elasticity, yield stress and work hardening rate) have been determined using combined methods such as nanoindentation, finite element modelling and artificial neural networks. The approach of neural modelling has been employed for the functional approximation of the nanoindentation load-displacement curves. The data obtained from finite element analyses have been used for the artificial neural networks training and validating. The neural model of polymer matrix phase of poly-l-lactide (PLLA) polymer in hydroxyapatite (HAp)/PLLA mechanical behaviour has been developed and tested versus unknown data related to the load-displacement curves that were not used during the neural network training. Based on this neural model, the nanoindentation matrix phase properties of PLLA polymer in HAp/PLLA composite have been predicted. © 2010 Institute of Materials, Minerals and Mining
    corecore