178 research outputs found

    Conductance through a Magnetic Domain Wall in Double Exchange System

    Full text link
    The conductance through a magnetic domain wall is calculated for the double exchange system as a function of energy and the width of the domain wall. It is shown that when the carrier density is low enough, the blockade is almost complete even for the smoothly varying spin configuration, i.e., large width of the domain wall. This result is applied to the manganese oxides.Comment: 3 pages, LaTex, 1 Postscript figur

    Phase Diagram of Half Doped Manganites

    Full text link
    An analysis of the properties of half-doped manganites is presented. We build up the phase diagram of the system combining a realistic calculation of the electronic properties and a mean field treatment of the temperature effects. The electronic structure of the manganites are described with a double exchange model with cooperative Jahn-Teller phonons and antiferromagnetic coupling between the MnMn core spins. At zero temperature a variety of electronic phases as ferromagnetic (FM) charge ordered (CO) orbital ordered (OO), CE-CO-OO and FM metallic, are obtained. By raising the temperature the CE-CO-OO phase becomes paramagnetic (PM), but depending on the electron-phonon coupling and the exchange coupling the transition can be direct or trough intermediate states: a FM disorder metallic, a PM-CO-OO or a FM-CO-OO. We also discus the nature of the high temperature PM phase in the regime of finite electron phonon coupling. In this regime half of the oxygen octahedra surrounding the MnMn ions are distorted. In the weak coupling regime the octahedra are slightly deformed and only trap a small amount of electronic charge, rendering the system metallic consequentially. However in the strong coupling regime the octahedra are strongly distorted, the charge is fully localized in polarons and the system is insulator.Comment: 10 pagses, 9 figures include

    Magnetic Transition Temperature of (La,Sr)MnO3_3

    Full text link
    Using the Kondo lattice model with classical spins in infinite dimension, magnetic phase transition in the perovskite-type 3d3d transition-metal oxide (La,Sr)MnO3_3 is theoretically studied. On the Bethe lattice, the self-consistency equations are solved exactly. Curie temperatures at the region of double-exchange ferromagnetism 0.1<x<0.250.1 < x < 0.25 as well as the Neel temperature at x=0x=0 are well reproduced quantitatively. Pressure effect on the Curie temperature is also discussed.Comment: 7 pages, 1 PS file with 3 figures appended at the end, LaTe

    Spin Excitation Spectrum of La1xAx_{1-x}A_xMnO3_3

    Full text link
    As an effective model to describe perovskite-type manganates (La,AA)MnO3_3, the double-exchange model on a cubic lattice is investigated. Spin excitation spectrum of the model in the ground state is studied using the spin wave approximation. Spin wave dispersion relation observed in the inelastic neutron scattering experiment of La0.7_{0.7}Pb0.3_{0.3}MnO3_3 is reproduced. Effective values for the electron bandwidth as well as Hund's coupling is estimated from the data.Comment: 10 pages LaTeX including 4 PS figure

    Superconducting and normal-state interlayer-exchange-coupling in La0.67_{0.67}Sr0.33_{0.33}MnO3{3}-YBa2_{2}Cu3_{3}O7La_{7}-La_{0.67}SrSr_{0.33}MnO MnO{3}$ epitaxial trilayers

    Get PDF
    The issue of interlayer exchange coupling in magnetic multilayers with superconducting (SC) spacer is addressed in La0.67_{0.67}Sr0.33_{0.33}MnO3_{3} (LSMO) - YBa2_{2}Cu3_{3}O7_{7} (YBCO) - La0.67_{0.67}Sr0.33_{0.33}MnO3_{3} (LSMO) epitaxial trilayers through resistivity, ac-susceptibility and magnetization measurements. The ferromagnetic (FM) LSMO layers possessing in-plane magnetization suppress the critical temperature (Tc)_{c}) of the c-axis oriented YBCO thin film spacer. The superconducting order, however, survives even in very thin layers (thickness dY_{Y} \sim 50 {\AA}, \sim 4 unit cells) at T << 25 K. A predominantly antiferromagnetic (AF) exchange coupling between the moments of the LSMO layers at fields << 200 Oe is seen in the normal as well as the superconducting states of the YBCO spacer. The exchange energy J1_{1} (\sim 0.08 erg/cm2^{2} at 150 K for dY_{Y} = 75 {\AA}) grows on cooling down to Tc_{c}, followed by truncation of this growth on entering the superconducting state. The coupling energy J1_{1} at a fixed temperature drops exponentially with the thickness of the YBCO layer. The temperature and dY_{Y} dependencies of this primarily non-oscillatory J1_{1} are consistent with the coupling theories for systems in which transport is controlled by tunneling. The truncation of the monotonic T dependence of J1_{1} below Tc_{c} suggests inhibition of single electron tunneling across the CuO2_{2} planes as the in-plane gap parameter acquires a non-zero value.Comment: Accepted for publication in Phys. Rev.

    Critical Temperature of Ferromagnetic Transition in Three-Dimensional Double-Exchange Models

    Full text link
    Ferromagnetic transition in three-dimensional double-exchange models is studied by the Monte Carlo method. Critical temperature TcT_{\rm c} is precisely determined by finite-size scaling analysis. Strong spin fluctuations in this itinerant system significantly reduce TcT_{\rm c} from mean-field estimates. By choosing appropriate parameters, obtained values of TcT_{\rm c} quantitatively agree with experiments for the ferromagnetic metal regime of (La,Sr)MnO3_{3}, which is a typical perovskite manganite showing colossal magnetoresistance. This indicates that the double-exchange mechanism alone is sufficient to explain TcT_{\rm c} in this material. Critical exponents are also discussed.Comment: 4 pages including 1 table and 4 figures, to be published in J. Phys. Soc. Jp

    Observation of anomalous single-magnon scattering in half-metallic ferromagnets by chemical pressure control

    Full text link
    Temperature variation of resistivity and specific heat have been measured for prototypical half-metallic ferromagnets, R_0.6Sr_0.4MnO_3, with controlling the one-electron bandwidth W. We have found variation of the temperature scalings in the resistivity from T^2 (R = La, and Nd) to T^3 (R = Sm), and have interpreted the $T^3-law in terms of the anomalous single-magnon scattering (AMS) process in the half-metallic system.Comment: To appear in Phys. Rev. Lett., 3 pages + 4 EPS figure

    Coulomb correlation and magnetic ordering in double-layered manganites: LaSr2_2Mn2_2O7_7

    Full text link
    A detailed study of the electronic structure and magnetic configurations of the 50 % hole-doped double layered manganite LaSr2_2Mn2_2O7_7 is presented. We demonstrate that the on-site Coulomb correlation (U) of Mn d electrons {\it (i)} significantly modifies the electronic structure, magnetic ordering (from FM to AFM), and interlayer exchange interactions, and {\it (ii)} promotes strong anisotropy in electrical transport, reducing the effective hopping parameter along the {\it c} axis for electrically active ege_g electrons. This findng is consistent with observations of anisotropic transport -- a property which sets this manganite apart from conventional 3D systems. A half-metallic band structure is predicted with both the LSDA and LSDA+U methods. The experimentally observed A-type AFM ordering in LaSr2_2Mn2_2O7_7 is found to be energetically more favorable with U \geq 7 eV. A simple interpretation of interlayer exchange coupling is given within double and super-exchange mechanisms based on the dependencies on U of the effective exchange parameters and ege_g state sub-band widths.Comment: 10 pages, 5 figure

    Relation between crystal and magnetic structures of the layered manganites La2-2xSr1+2xMn2O7 (0.30 =< x =< 0.50)

    Full text link
    Comprehensive neutron-powder diffraction and Rietveld analyses were carried out to clarify the relation between the crystal and magnetic structures of La2-2xSr1+2xMn2O7 (0.30 =< x =< 0.50). The Jahn-Teller (JT) distortion of Mn-O6 octahedra, i.e., the ratio of the averaged apical Mn-O bond length to the equatorial Mn-O bond length, is Delta_JT=1.042(5) at x=0.30, where the magnetic easy-axis at low temperature is parallel to the c axis. As the JT distortion becomes suppressed with increasing x, a planar ferromagnetic structure appears at x =< 0.32, which is followed by a canted antiferromagnetic (AFM) structure at x =< 0.39. The canting angle between neighboring planes continuously increases from 0 deg (planar ferromagnet: 0.32 =< x < 0.39) to 180 deg (A-type AFM: x=0.48 where Delta_JT=1.013(5)). Dominance of the A-type AF structure with decrease of JT distortion can be ascribed to the change in the eg orbital state from d3z^2-r^2 to dx^2-y^2
    corecore