57 research outputs found

    PPARĪ³ Agonist Beyond Glucose Lowering Effect

    Get PDF
    The nuclear hormone receptor PPARĪ³ is activated by several agonists, including members of the thiazolidinedione group of insulin sensitizers. Pleiotropic beneficial effects of these agonists, independent of their blood glucose-lowering effects, have recently been demonstrated in the vasculature. PPARĪ³ agonists have been shown to lower blood pressure in animals and humans, perhaps by suppressing the renin-angiotensin (Ang)-aldosterone system (RAAS), including the inhibition of Ang II type 1 receptor expression, Ang-II-mediated signaling pathways, and Ang-II-induced adrenal aldosterone synthesis/secretion. PPARĪ³ agonists also inhibit the progression of atherosclerosis in animals and humans, possibly through a pathway involving the suppression of RAAS and the thromboxane A2 system, as well as the protection of endothelial function. Moreover, PPARĪ³-agonist-mediated renal protection, especially the reduction of albuminuria, has been observed in diabetic nephropathy, including animal models of the disease, and in non-diabetic renal dysfunction. The renal protective activities may reflect, at least in part, the ability of PPARĪ³ agonists to lower blood pressure, protect endothelial function, and cause vasodilation of the glomerular efferent arterioles. Additionally, anti-neoplastic effects of PPARĪ³ agonists have recently been described. Based on the multiple therapeutic actions of PPARĪ³ agonists, they will no doubt lead to novel approaches in the treatment of lifestyle-related and other diseases

    Transfection of endothelial nitric oxide synthase gene improves angiogenic efficacy of endothelial progenitor cells in rabbits with hindlimb ischemia

    No full text
    Background: The present study explored the effect of endothelial nitric oxide synthase (eNOS) gene transfer on the angiogenic potential of ex vivo expanded endothelial progenitor cells (EPCs) in a rabbit model of hindlimb ischemia. Methods: Rabbit peripheral blood EPCs were cultured and transfected with mammalian expression vector pcDNA3.1-eNOS containing full-length human eNOS gene. Ischemia was induced in the right hind limb of three groups of rabbits by ligation of the distal external iliac artery and excision of the common and superficial femoral arteries. In one group of animals, ten days after the surgery, autologous eNOS-EPCs were transplanted intramuscularly in the ischemic limb. Two other groups received an equivalent number of unmodified EPCs or phosphate buffered saline (PBS) respectively. Results: Two weeks after cell transplantation, the in vivo expression of eNOS was detected in limb tissue sections of eNOS-EPCs treated animals. Animals treated with eNOS-EPCs had a significant reduction in ischemic muscle necrosis and inflammation, augmentation in the capillary density (P< 0.05) and angiographic scores demonstrating distal arterial reconstitution and enhanced angiogenesis in comparison to animals transplanted with EPCs or PBS (P< 0.05). Conclusion: We conclude that modification of EPCs by eNOS constitutes an effective strategy to improve the efficacy of EPCs for therapeutic angiogenesis
    • ā€¦
    corecore