4 research outputs found

    Macromol. Mater. Eng. 3/2018

    Get PDF
    Bacterial cellulose blended polymeric fibrous bandages made in a novel way, from a solution subjected to gyration under pressure to directly weave the bandages. The products show cellular attraction, mechanical and swelling properties in preliminary tests and heralds a very promising new route for the manufacture of wound care bandages. This is reported by Esra Altun, Mehmet Onur Aydogdu, Fatma Koc, Maryam Crabbe‐Mann, Francis Brako, Rupy Kaur‐Matharu, Gunes Ozen, Serap Erdem Kuruca, Ursula Edirisinghe, Oguzhan Gunduz, and Mohan Edirisinghein

    Novel Making of Bacterial Cellulose Blended Polymeric Fiber Bandages

    Get PDF
    Bacterial cellulose (BC) is a very promising biological material. However, at present its utilization is limited by difficulties in shape forming it. In this Communication, it is shown how this can be overcome by blending it with poly(methylmethacrylate) (PMMA) polymer. BC:PMMA fibers are produced by pressurized gyration of blended BC:PMMA solutions. Subsequently, BC:PMMA bandage‐like scaffolds are generated with different blends. The products are investigated to determine their morphological and chemical features. Cell culture and proliferation tests are performed to obtain information on biocompatibility of the scaffolds

    Evaluation of burst release and sustained release of pioglitazone-loaded fibrous mats on diabetic wound healing: an in vitro and in vivo comparison study

    Get PDF
    In order to provide more effective treatment strategies for the rapid healing of diabetic wounds, novel therapeutic approaches need to be developed. The therapeutic potential of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist pioglitazone hydrochloride (PHR) in two different release kinetic scenarios, burst release and sustained release, was investigated and compared with in vitro and in vivo tests as potential wound healing dressings. PHR-loaded fibrous mats were successfully fabricated using polyvinyl-pyrrolidone and polycaprolactone by scalable pressurized gyration. The results indicated that PHR-loaded fibrous mats expedited diabetic wound healing in type-1 diabetic rats and did not show any cytotoxic effect on NIH/3T3 (mouse embryo fibroblast) cells, albeit with different release kinetics and efficacies. The wound healing effects of fibrous mats are presented with histological and biochemical evaluations. PHR-loaded fibrous mats improved neutrophil infiltration, oedema, and inflammation and increased epidermal regeneration and fibroblast proliferation, but the formation of hair follicles and completely improved oedema were observed only in the sustained release form. Thus, topical administration of PPAR-gamma agonist in sustained release form has high potential for the treatment of diabetic wounds in inflammatory and proliferative phases of healing with high bioavailability and fewer systemic side effects
    corecore