10 research outputs found

    Spatial resolution measurement for iterative reconstruction by use of image-averaging techniques in computed tomography.

    Get PDF
    13301甲第4211号博士(保健学)金沢大学博士論文本文Full 以下に掲載:Radiological Physics and Technology 7(2) pp.358-366 2014. Springer. 共著者:Atsushi Urikura, Katsuhiro Ichikawa, Takanori Hara, Eiji Nishimaru, Yoshihiro Nakay

    Assessment of temporal resolution of multi-detector row computed tomography in helical acquisition mode using the impulse method

    Get PDF
    The purpose of this study was to propose a method for assessing the temporal resolution (TR) of multi-detector row computed tomography (CT) (MDCT) in the helical acquisition mode using temporal impulse signals generated by a metal ball passing through the acquisition plane. An 11-mm diameter metal ball was shot along the central axis at approximately 5m/s during a helical acquisition, and the temporal sensitivity profile (TSP) was measured from the streak image intensities in the reconstructed helical CT images. To assess the validity, we compared the measured and theoretical TSPs for the 4-channel modes of two MDCT systems. A 64-channel MDCT system was used to compare TSPs and image quality of a motion phantom for the pitch factors P of 0.6, 0.8, 1.0 and 1.2 with a rotation time R of 0.5s, and for two R/. P combinations of 0.5/1.2 and 0.33/0.8. Moreover, the temporal transfer functions (TFs) were calculated from the obtained TSPs. The measured and theoretical TSPs showed perfect agreement. The TSP narrowed with an increase in the pitch factor. The image sharpness of the 0.33/0.8 combination was inferior to that of the 0.5/1.2 combination, despite their almost identical full width at tenth maximum values. The temporal TFs quantitatively confirmed these differences. The TSP results demonstrated that the TR in the helical acquisition mode significantly depended on the pitch factor as well as the rotation time, and the pitch factor and reconstruction algorithm affected the TSP shape. © 2015 Associazione Italiana di Fisica Medica.Embargo Period 12 month

    Temporal resolution measurement of 128-slice dual source and 320-row area detector computed tomography scanners in helical acquisition mode using the impulse method

    Get PDF
    Purpose: To analyse the temporal resolution (TR) of modern computed tomography (CT) scanners using the impulse method, and assess the actual maximum TR at respective helical acquisition modes. Methods: To assess the actual TR of helical acquisition modes of a 128-slice dual source CT (DSCT) scanner and a 320-row area detector CT (ADCT) scanner, we assessed the TRs of various acquisition combinations of a pitch factor (P) and gantry rotation time (R). Results: The TR of the helical acquisition modes for the 128-slice DSCT scanner continuously improved with a shorter gantry rotation time and greater pitch factor. However, for the 320-row ADCT scanner, the TR with a pitch factor of 1.0, it was approximately one half of the gantry rotation time. The maximum TR values of single- and dual-source helical acquisition modes for the 128-slice DSCT scanner were 0.138 (R/. P = 0.285/1.5) and 0.074. s (R/. P = 0.285/3.2), and the maximum TR values of the 64. ×. 0.5- and 160. ×. 0.5-mm detector configurations of the helical acquisition modes for the 320-row ADCT scanner were 0.120 (R/. P = 0.275/1.375) and 0.195. s (R/. P = 0.3/0.6), respectively. Conclusion: Because the TR of a CT scanner is not accurately depicted in the specifications of the individual scanner, appropriate acquisition conditions should be determined based on the actual TR measurement. © 2016 Associazione Italiana di Fisica Medica

    Radiation dose and image quality of CT fluoroscopy with partial exposure mode

    Get PDF
    PURPOSEThe present study aimed to evaluate the scan technique of computed tomography (CT)-guided puncture procedures using partial exposure mode (PEM) on the radiation dose of the operator’s hand and image quality.METHODSRadiation dose was evaluated using three types of scanning methods: one-shot scan (OS), OS with a bismuth shield added (OSBismuth), and a half-scan (i.e., PEM) capable of an adjustable exposure angle. Dose evaluation was performed using a torso phantom, while a circular phantom simulating the liver parenchyma and lesions was used for image quality evaluation. For each scanning method, four measurements were made to determine the radiation dose to the operator's hand and the dose distribution on the surface of the patient's torso; the output-dose profile was determined from five measurements. Image quality was evaluated in terms of contrast and contrast-to-noise ratio (CNR). Analysis of variance (ANOVA) or Friedman test were used for comparison between groups as appropriate. The post hoc tests were Tukey’s honestly difference (HSD) test for parametric data or Wilcoxon signed rank test with Bonferroni correction for nonparametric data.RESULTSThe PEM yielded a radiation dose to the operator’s hand that was 84% (0.35 vs. 2.33 mGy) lower than that of the OS. The dose to the patient’s torso was reduced by 35% and 68% for the OSBismuth and PEM, respectively, relative to that of the OS. Compared with the CNR of the other two scanning methods (OS, 2.9±0.1; OSBismuth, 2.9±0.1), the PEM increased the standard deviation and decreased the CNR (2.1±0.04, Tukey’s HSD, P < 0.001 for all). Images acquired with PEM showed visibility equivalent to that of other scanning methods when window conditions were adjusted.CONCLUSIONThis study demonstrated that CT-guided puncture procedure using PEM effectively reduces the operator's exposure to radiation while minimizing image quality deterioration
    corecore