1,694 research outputs found

    PaLS: filtering common literature, biological terms and pathway information

    Get PDF
    Many biological experiments and their subsequent analysis yield lists of genes or proteins that can potentially be important to the prognosis or diagnosis of certain diseases (e.g. cancer). Nowadays, information about the function of those genes or proteins may be already gathered in some databases, but it is essential to understand if some of the members of those lists have a function in common or if they belong to the same metabolic pathway. To help researchers filter those genes or proteins that have such information in common, we have developed PaLS (pathway and literature strainer, http://pals.bioinfo.cnio.es). PaLS takes a list or a set of lists of gene or protein identifiers and shows which ones share certain descriptors. Four publicly available databases have been used for this purpose: PubMed, which links genes with those articles that make reference to them; Gene Ontology, an annotated ontology of terms related to the cellular component, biological process or molecular function where those genes or proteins are involved; KEGG pathways and Reactome pathways. Those descriptors among these four sources of information that are shared by more members of the list (or lists) are highlighted by PaLS

    Process and machine system development for the forming of miniature/micro sheet metal products

    Get PDF
    This paper reports on the current development of the process for the forming of thin sheet-metal micro-parts (t < 50µm) and the corresponding machine system which is part of the research and technological development of an EU funded integrated project - MASMICRO ("Integration of Manufacturing Systems for the Mass-Manufacture of Miniature/Micro-Products" (/www.masmicro.net/). The process development started with qualification of the fundamentals related to the forming of thin sheet-metals in industrial environment, for which a testing machine and several sets of the testing tools were developed. The process was further optimised, followed by new tool designs. Based on the experience gained during the process development, a new forming press which is suitable for industrial, mass-customised production, has been designed

    Otolith Exchange Results

    Get PDF

    A Finite Element based Deep Learning solver for parametric PDEs

    Get PDF
    We introduce a dynamic Deep Learning (DL) architecture based on the Finite Element Method (FEM) to solve linear parametric Partial Differential Equations(PDEs). The connections between neurons in the architecture mimic the Finite Element connectivity graph when applying mesh refinements. We select and discuss several losses employing preconditioners and different norms to enhance convergence. For simplicity, we implement the resulting Deep-FEM in one spatial domain (1D), although its extension to 2D and 3D problems is straightforward. Extensive numerical experiments show in general good approximations for both symmetric positive definite (SPD) and indefinite problems in parametric and non-parametric problems. However, in some cases, lack of convexity prevents us from obtaining high-accuracy solutions.This work has received funding from: the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 777778 (MATHROCKS); the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra program POCTEFA 2014-2020 Project PIXIL (EFA362/19); the Spanish Ministry of Science and Innovation projects with references PID2019-108111RB-I00 (FEDER/AEI) and PDC2021-121093-I00, the "BCAM Severo Ochoa" accreditation of excellence (SEV-2017-0718); and the Basque Government through the BERC 2018-2021 program, the three Elkartek projects 3KIA (KK-2020/00049), EXPERTIA (KK-2021/00048), and SIGZE (KK-2021/00095), and the Consolidated Research Group MATHMODE (IT1294-19) given by the Department of Education
    corecore