826 research outputs found
Mining web data for competency management
We present CORDER (COmmunity Relation Discovery by named Entity Recognition) an un-supervised machine learning algorithm that exploits named entity recognition and co-occurrence data to associate individuals in an organization with their expertise and associates. We
discuss the problems associated with evaluating
unsupervised learners and report our initial evaluation
experiments
Localization of non-interacting electrons in thin layered disordered systems
Localization of electronic states in disordered thin layered systems with b
layers is studied within the Anderson model of localization using the
transfer-matrix method and finite-size scaling of the inverse of the smallest
Lyapunov exponent. The results support the one-parameter scaling hypothesis for
disorder strengths W studied and b=1,...,6. The obtained results for the
localization length are in good agreement with both the analytical results of
the self-consistent theory of localization and the numerical scaling studies of
the two-dimensional Anderson model. The localization length near the band
center grows exponentially with b for fixed W but no
localization-delocalization transition takes place.Comment: 6 pages, 5 figure
Pathways to economic well-being among teenage mothers in Great Britain
The present study examines pathways to independence from social welfare among 738 teenage mothers, participants of the 1970 British Cohort Study, who were followed up at age 30 years. Using a longitudinal design, a pathway model is tested, examining linkages between family social background, cognitive ability, school motivation, and individual investments in education, as well as work- and family-related roles. The most important factors associated with financial independence by age 30 are continued attachment to the labor market as well as a stable relationship with a partner (not necessarily the father of the child). Pathways to financial independence, in turn, are predicted through own cognitive resources, school motivation, and family cohesion. Implications of findings for policy making are discussed.© 2010 Hogrefe Publishing
Weak localisation, hole-hole interactions and the "metal"-insulator transition in two dimensions
A detailed investigation of the metallic behaviour in high quality
GaAs-AlGaAs two dimensional hole systems reveals the presence of quantum
corrections to the resistivity at low temperatures. Despite the low density
() and high quality of these systems, both weak localisation
(observed via negative magnetoresistance) and weak hole-hole interactions
(giving a correction to the Hall constant) are present in the so-called
metallic phase where the resistivity decreases with decreasing temperature. The
results suggest that even at high there is no metallic phase at T=0 in
two dimensions.Comment: 5 pages, 4 figure
Back gating of a two-dimensional hole gas in a SiGe quantum well
A device comprising a low-resistivity, n-type, Si substrate as a back gate to a p-type (boron), remote-doped, SiGe quantum well has been fabricated and characterized. Reverse and forward voltage biasing of the gate with respect to the two-dimensional hole gas in the quantum well allows the density of holes to be varied from 8 × 1011 cm–2 down to a measurement-limited value of 4 × 1011 cm–2. This device is used to demonstrate the evolution with decreasing carrier density of a re-entrant insulator state between the integer quantum Hall effect states with filling factors 1 and 3
Analysis of the Metallic Phase of Two-Dimensional Holes in SiGe in Terms of Temperature Dependent Screening
We find that temperature dependent screening can quantitatively explain the
metallic behaviour of the resistivity on the metallic side of the so-called
metal-insulator transition in p-SiGe. Interference and interaction effects
exhibit the usual insulating behaviour which is expected to overpower the
metallic background at sufficiently low temperatures. We find empirically that
the concept of a Fermi-liquid describes our data in spite of the large r_s = 8.Comment: 4 pages, 3 figure
Molecular hierarchy of mammary differentiation yields refined markers of mammary stem cells
The partial purification of mouse mammary gland stem cells (MaSCs) using combinatorial cell surface markers (Lin-CD24+CD29hCD49fh) has improved our understanding of their role in normal development and breast tumorigenesis. Despite the significant improvement in MaSC enrichment, there is presently no methodology that adequately isolates pure MaSCs. Seeking new markers of MaSCs, we characterized the stem-like properties and expression signature of label-retaining cells from the mammary gland of mice expressing a controllable H2b-GFP transgene. In this system, the transgene expression can be repressed in a doxycycline-dependent fashion, allowing isolation of slowly dividing cells with retained nuclear GFP signal. Here, we show that H2b-GFPh cells reside within the predicted MaSC compartment and display greater mammary reconstitution unit frequency compared with H2b-GFPneg MaSCs. According to their transcriptome profile, H2b-GFPh MaSCs are enriched for pathways thought to play important roles in adult stem cells. We found Cd1d, a glycoprotein expressed on the surface of antigen-presenting cells, to be highly expressed by H2b-GFPh MaSCs, and isolation of Cd1d+ MaSCs further improved the mammary reconstitution unit enrichment frequency to nearly a single-cell level. Additionally, we functionally characterized a set of MaSC-enriched genes, discovering factors controlling MaSC survival. Collectively, our data provide tools for isolating a more precisely defined population of MaSCs and point to potentially critical factors for MaSC maintenance
Neurotransmitters Drive Combinatorial Multistate Postsynaptic Density Networks
The mammalian postsynaptic density (PSD) comprises a complex collection of ~1100 proteins. Despite extensive knowledge of individual proteins, the overall organization of the PSD is poorly understood. Here, we define maps of molecular circuitry within the PSD based on phosphorylation of postsynaptic proteins. Activation of a single neurotransmitter receptor, the N-methyl-D-aspartate receptor (NMDAR), changed the phosphorylation status of 127 proteins. Stimulation of ionotropic and metabotropic glutamate receptors and dopamine receptors activated overlapping networks with distinct combinatorial phosphorylation signatures. Using peptide array technology, we identified specific phosphorylation motifs and switching mechanisms responsible for the integration of neurotransmitter receptor pathways and their coordination of multiple substrates in these networks. These combinatorial networks confer high information-processing capacity and functional diversity on synapses, and their elucidation may provide new insights into disease mechanisms and new opportunities for drug discover
Metal-insulator transition at B=0 in a dilute two dimensional GaAs-AlGaAs hole gas
We report the observation of a metal insulator transition at B=0 in a high
mobility two dimensional hole gas in a GaAs-AlGaAs heterostructure. A clear
critical point separates the insulating phase from the metallic phase,
demonstrating the existence of a well defined minimum metallic conductivity
sigma(min)=2e/h. The sigma(T) data either side of the transition can be
`scaled' on to one curve with a single parameter (To). The application of a
parallel magnetic field increases sigma(min) and broadens the transition. We
argue that strong electron-electron interactions (rs = 10) destroy phase
coherence, removing quantum intereference corrections to the conductivity.Comment: 4 pages RevTex + 4 figures. Submitted to PRL. Originally posted 22
September 1997. Revised 12 October 1997 - minor changes to referencing,
figure cations and figure
Bisphenol A causes reproductive toxicity, decreasesdnmt1transcription, and reduces global DNA methylation in breeding zebrafish(Danio rerio)
Bisphenol A (BPA) is a commercially important high production chemical widely used in epoxy resins and polycarbonate plastics, and is ubiquitous in the environment. Previous studies demonstrated that BPA activates estrogenic signaling pathways associated with adverse effects on reproduction in vertebrates and that exposure can induce epigenetic changes. We aimed to investigate the reproductive effects of BPA in a fish model and to document its mechanisms of toxicity. We exposed breeding groups of zebrafish (Danio rerio) to 0.01, 0.1, and 1Â mg/L BPA for 15Â days. We observed a significant increase in egg production, together with a reduced rate of fertilization in fish exposed to 1Â mg/L BPA, associated with significant alterations in the transcription of genes involved in reproductive function and epigenetic processes in both liver and gonad tissue at concentrations representing hotspots of environmental contamination (0.1Â mg/L) and above. Of note, we observed reduced expression of DNA methyltransferase 1 (dnmt1) at environmentally relevant concentrations of BPA, along with a significant reduction in global DNA methylation, in testes and ovaries following exposure to 1Â mg/L BPA. Our findings demonstrate that BPA disrupts reproductive processes in zebrafish, likely via estrogenic mechanisms, and that environmentally relevant concentrations of BPA are associated with altered transcription of key enzymes involved in DNA methylation maintenance. These findings provide evidence of the mechanisms of action of BPA in a model vertebrate and advocate for its reduction in the environment.We thank the Aquatic Resources Centre technical team for support with zebrafish husbandry. This
work was funded by a PhD studentship from the Fisheries Society of the British Isles
(http://www.fsbi.org.uk/) and the University of Exeter (http://www.exeter.ac.uk/) to LVL and EMS. TMUW was funded by a Natural Environment Research Council CASE PhD studentship (grant no.
NE/I528326/1) and the Salmon & Trout Association (http://www.salmon-trout.org/)
- …