Localization of electronic states in disordered thin layered systems with b
layers is studied within the Anderson model of localization using the
transfer-matrix method and finite-size scaling of the inverse of the smallest
Lyapunov exponent. The results support the one-parameter scaling hypothesis for
disorder strengths W studied and b=1,...,6. The obtained results for the
localization length are in good agreement with both the analytical results of
the self-consistent theory of localization and the numerical scaling studies of
the two-dimensional Anderson model. The localization length near the band
center grows exponentially with b for fixed W but no
localization-delocalization transition takes place.Comment: 6 pages, 5 figure