54 research outputs found

    Pegaso: an ultra-light long duration stratospheric

    Get PDF
    Launched from the Mario Zuccelli Station (Baia Terra Nova) in Antarctica during the 2005/06 austral summer, the PEGASO-D payload lifted into the stratospheric anticyclone over the southern polar region. This effort marks the first Long Duration Scientific payload to be launched from this location and is the fourth such payload launched in the polar regions. Performing in the framework of the NOBILE/AMUNDSEN collaborative LDB development between ASI-ARR. The Italian Institute of Geophysics and Volcanology (INGV), with the sponsorship of the Italian Antarctic Program (PNRA) and the Italian Space Agency (ASI),designed and built the Ultra-Light system together with three Universities in Italy. The Pegaso program has been created to investigate the Earth magnetic field and provide a precursor series of small payload launches for the bigger LDB program such as OLIMPO, BOOMERanG and BArSPOrt through this collaboration between ASI and ARR. The Italian scientific community, aware of the big advantages that LDB balloons can offer to their experiments, proposed to extend the LDB program to Southern polar regions, besides performing launches from the newly initiated Nobile/Amundsen Stratospheric Balloon Center in Svalbard, Norway.Three PEGASO (Polar Explorer for Geomagnetics And other Scientific Observations) payloads have been launched from the Svalbard (No) in collaboration with Andoya Rocket Range, ASI and ISTAR (Operations and logistics) during the past two northern summers. These stratospheric (altitude m.35000) small 10kmc balloons have floated in the stratosphere between 14 to 39 days measuring the magnetic field of polar regions, by means of a 3-axys-fluxgate magnetometer, during a three year campaign. The study of the magnetic field and its variations is done through permanent observatories. They provide us with high quality data but their spatial distribution is not quite regular, specially in Antarctica due to logistic difficulties. The coverage is improved through marine and aeromagnetic surveys, and also through satellite missions. There exists nevertheless a gap in the wavelengths of the magnetic field represented by these kind of measurements. Satellite data are too far away from Earth's surface to individuate wavelengths lower than 1000 km, and near-ground sur- veys are not able to represent wavelengths longer than the dimensions of the surveyed area. Moreover, there is a region empty of data around the geographical pole for the satellite measurements. The size of these gaps depends on the orbital parameters, but it can reach up to 10 degrees around the pole. PEGASO allows to bridge this gap in the measurements of the magnetic field. Surveys carried out at 35 km height allow the study of crustal anomalies in the range between, we can say, 60 and 1000 km. Taking into account that pathfinders (smaller non-recoverable balloon systems) are usually sent to explore the atmospheric currents, the use of PEGASO as pathfinder allows us to obtain all these results at a very affordable cost. The PEGASO payload was also developed as a single source system integrating science, housekeeping and operational control of the entire balloon borne configuration.Satellite telemetry sent the scientific (magnetometric) data, house-keeping (temperature, solar panel voltage and current, altitude and time) and telecommand (four ballast, two parachute release system, system reset), and powered the terminate system. Data flows through the IRIDIUM telephone service. The onboard systems were kept inside a vessel (white painted and pressurizzed vessel due to power dissipation) except for external flexible solar panels and magnetometer, attached to an external boom. Two redundant tracking systems have been used: a first GPS was integrated inside the on-board telemetry system, necessary to reconstruct position and time of scientific data, while an independent GPS-ARGOS system gave the balloon trajectory, including its descent. Continuous trajectory predictions were made during the missions; they have been necessary, in particular, for the flight safety requirements of the northern hemisphere. The evaluation of the statistical error is proposed. The PEGASO payload was developed to be a light, cost effective way to explore the potential of Ultra-Light Long Duration Ballooning for science as well as an introduction to the earth-space possibilities for students.PublishedBeijing, China1A. Geomagnetismo e Paleomagnetism

    Active and capable fault? The case study of Prata D'Ansidonia (L'Aquila, Central Apennine)

    Get PDF
    The study deals with the morphogenetic meaning of several linear scarps that carved the paleo-landsurface of Valle Daria, an extended geomorphological feature located between Barisciano (AQ) and Prata D'Ansidonia (AQ). These villages are situated in the southern termination of the L'Aquila intermontane basin (one of the largest basin of the central Apennines), nearby the epicentral area of the 6th April 2009 earthquake (Mw 6.1). These scarps, up to 3 meters high and up to 1.5 km long, define narrow/elongated flat-bottom depressions, filled by colluvial deposits. These depressions are carved into fluvial-deltaical conglomerates, dated back to the lower Pleistocene. Even if different authors have interpreted these shapes as a paleodrainage or secondary faults, a morphometrical study of the Valle Daria paleo-landsurface provided several information which cast doubt on these two interpretations. In order to better understand the nature and the state of activity of these lineaments, geological, geomorphological and geophysical surveys were carried out. A paleoseismological trench pointed out two events of deformation. The curvilinear shape of the shear plane seems to be related to a slow deformation, attributable to collapse-phenomena. Three GPR profiles, two ERT profiles and two microgravimetrical profiles seem to corroborate this interpretation. Therefore, this study permits to attribute the genesis of these scarps to tectono-karstic phenomena, excluding the presence of an active and capable fault.Published346-3494T. Sismologia, geofisica e geologia per l'ingegneria sismicaN/A or not JC

    Pattern of care and effectiveness of treatment for glioblastoma patients in the real world: Results from a prospective population-based registry. Could survival differ in a high-volume center?

    Get PDF
    BACKGROUND: As yet, no population-based prospective studies have been conducted to investigate the incidence and clinical outcome of glioblastoma (GBM) or the diffusion and impact of the current standard therapeutic approach in newly diagnosed patients younger than aged 70 years. METHODS: Data on all new cases of primary brain tumors observed from January 1, 2009, to December 31, 2010, in adults residing within the Emilia-Romagna region were recorded in a prospective registry in the Project of Emilia Romagna on Neuro-Oncology (PERNO). Based on the data from this registry, a prospective evaluation was made of the treatment efficacy and outcome in GBM patients. RESULTS: Two hundred sixty-seven GBM patients (median age, 64 y; range, 29-84 y) were enrolled. The median overall survival (OS) was 10.7 months (95% CI, 9.2-12.4). The 139 patients 64aged 70 years who were given standard temozolomide treatment concomitant with and adjuvant to radiotherapy had a median OS of 16.4 months (95% CI, 14.0-18.5). With multivariate analysis, OS correlated significantly with KPS (HR = 0.458; 95% CI, 0.248-0.847; P = .0127), MGMT methylation status (HR = 0.612; 95% CI, 0.388-0.966; P = .0350), and treatment received in a high versus low-volume center (HR = 0.56; 95% CI, 0.328-0.986; P = .0446). CONCLUSIONS: The median OS following standard temozolomide treatment concurrent with and adjuvant to radiotherapy given to (72.8% of) patients aged 6470 years is consistent with findings reported from randomized phase III trials. The volume and expertise of the treatment center should be further investigated as a prognostic factor

    Primary Mediastinal and Testicular Germ Cell Tumors in Adolescents and Adults: A Comparison of Genomic Alterations and Clinical Implications

    No full text
    Mediastinal germ cell tumors (MGCTs) share histologic, molecular and biomarkers features with testicular GCTs; however, nonseminomatous MGCTs are usually more aggressive and have poorer prognosis than nonseminomatous TGCTs. Most nonseminomatous MGCT cases show early resistance to platinum-based therapies and seldom have been associated with the onset of one or more concomitant somatic malignancies, in particular myeloid neoplasms with recent findings supporting a common, shared genetic precursor with the primary MGCT. Genomic, transcriptomic and epigenetic features of testicular GCTs have been extensively studied, allowing for the understanding of GCT development and transformation of seminomatous and nonseminomatous histologies. However, MGCTs are still lacking proper multi-omics analysis and only few data are reported in the literature. Understanding of the mechanism involved in the development, in the progression and in their higher resistance to common therapies is still poorly understood. With this review, we aim to collect all molecular findings reported in this rare disease, resuming the similarities and disparities with the gonadal counterparts

    The Role of <i>TP53</i> Mutations in <i>EGFR</i>-Mutated Non-Small-Cell Lung Cancer: Clinical Significance and Implications for Therapy

    No full text
    Non-Small-Cell Lung Cancer (NSCLC) is the primary cause of cancer-related death worldwide. Oncogene-addicted patients usually benefit from targeted therapy, but primary and acquired resistance mechanisms inevitably occur. Tumor protein 53 (TP53) gene is the most frequently mutated gene in cancer, including NSCLC. TP53 mutations are able to induce carcinogenesis, tumor development and resistance to therapy, influencing patient prognosis and responsiveness to therapy. TP53 mutants present in different forms, suggesting that different gene alterations confer specific acquired protein functions. In recent years, many associations between different TP53 mutations and responses to Epidermal Growth Factor Receptor (EGFR) targeted therapy in NSCLC patients have been found. In this review, we discuss the current landscape concerning the role of TP53 mutants to guide primary and acquired resistance to Tyrosine-Kinase Inhibitors (TKIs) EGFR-directed, investigating the possible mechanisms of TP53 mutants within the cellular compartments. We also discuss the role of the TP53 mutations in predicting the response to targeted therapy with EGFR-TKIs, as a possible biomarker to guide patient stratification for treatment

    Ultrasound Cyclo-Plasty in Patients with Glaucoma: 1-Year Results from a Multicentre Prospective Study

    No full text
    Purpose: The aim of this study was to evaluate the safety and efficacy of ultrasound cyclo-plasty (UCP) for reducing intraocular pressure (IOP) in patients with glaucoma. Methods: This is a multicentre prospective study conducted in 3 Italian glaucoma centres. UCP was performed by EyeOP1, which delivers ultrasound beams using 6 piezoelectric transducers activated for 4/6 s (first generation) or 8 s (second generation). Primary outcomes were the mean IOP reduction and the rates of success after 1 year. Secondary outcomes were the mean IOP reduction at each follow-up, and the reduction of the number of hypotensive medications. Results: In total, 49 eyes from 47 patients were treated. One year postoperatively, the mean IOP had decreased from 27.7 \ub1 9.2 to 19.8 \ub1 6.9 mm Hg (p < 0.001), and the mean number of hypotensive drops and tablets had decreased from 3.2 and 0.5 to 2.3 and 0.2, respectively (p < 0.05). Postoperative IOP reduction was significantly related to preoperative IOP (r 2 = 0.5034; p < 0.0001). Second-generation probes determined a significantly higher IOP reduction (p < 0.05). Qualified success was achieved in 25 eyes (51.1%) and complete success in 21 (42.9%), while failure was recorded in 12 (24.5%). Conclusions: UCP is safe and effective for reducing IOP. The procedure determines a greater IOP reduction in patients with higher preoperative IOP. Second-generation probes improve outcomes without detrimental effects on safety
    corecore