76 research outputs found

    MULTI-CHANNEL ACTIVITY CORRELATION ANALYSIS - A METHOD TO DETECT CEREBRAL ISCHEMIA BY THE EEG

    Get PDF
    The occlusion of the middle cerebral and the common carotid artery was used as model of ischemia. We analysed the electroencephalogram to search for features which were sensi-tive to the changes caused by reduced blood supply of the brain. Bipolar lead combinations were derived for neigh boring electrodes, and the total activity was calculated as the mean square value of the time domain signal. A moving correlation window was applied to them to produce mean correlation as a function of time. All cases showed significant increase of the correlation coefficients following the event of the occlusion. It was concluded that multi-channel EEG activity correlation analysis may indicate the simultaneous drop of activity or the drop-increase-drop sequence on most of the channels due to ischemia. This method represented a further step towards the development of a universally applicable real-time ischemia monitor which could be used under intraoperative circumstances and for long-term monitoring to help to reduce neurological risks related to the instability of the cerebral perfusion

    Cardiopulmonary and hemodynamic changes in complement activation-related pseudoallergy

    Get PDF
    Complement activation-related pseudoallergy (CARPA) is a frequent side effect of intravenous therapies with nanoparticle-containing drugs and biologicals that are recognized by the immune system as foreign. It is an acute infusion reaction dominated by cutaneous and hemodynamic changes, most significantly a cardiopulmonary distress involving major pulmonary hypertension, systemic hypotension and arrhythmias. Because CARPA is unpredictable by conventional allergy tests and it may be life threatening, it can represent a major barrier to the safe therapeutic application of many modern medicines, including liposomal drugs and monoclonal antibodies. This review summarizes and updates the facts and opens questions regarding this phenomenon, with particular focus on its porcine model

    Critical financial and accounting issues of early-stage innovative enterprises

    Get PDF
    While the most important financial and accounting issues of early-stage enterprises with fast growth potential (startups) are widely covered in practice-oriented literature, academic studies do not deal with this subject. In the author’s opinion, this subject should receive more attention in academic writing, as inappropriate financial management can make it more difficult for startups to raise capital at a later stage of operation and, thus, to grow further. This paper is based on a sample of financial and tax due diligences of Hungarian startups. The authors intended to present some of the issues identified and relevant also to startups operating outside Hungary. The sample shows that due to a loss making operation in the early years, this type of companies can quickly use up their equity and, therefore, they need continuous ownership (equity) financing. The sample demonstrates that debt financing is not a viable option for this group of companies, the only option for them is venture capital financing. The authors confirmed the positive relation between startups and R&D&I. In their opinion, compliance with the rules and the optimization permitted by the rules themselves is highly significant for startups to manage their high upfront losses and to attain their general aim to raise investment capital. The financial and tax due diligences at startups allowed to identify several inappropriate practices due to complicated accounting and tax laws

    Changes in extracellular pH during electrical stimulation of isolated rat vagus nerve

    Get PDF
    Double-barrelled pH-sensitive micro-electrodes were used to record changes of extracellular pH during repetitive stimulation of isolated rat vagus nerves. It was found that a small initial alkaline shift was followed by a prolonged acidification. The acidification was correlated in time with the poststimulus undershoot of the extracellular K+ activity and with the recovery phase of the nerve conduction velocity. In the presence of ouabain, the acid component of the pH change was completely abolished (indicating a metabolic origin), whereas the alkaline component remained unaltered. These pH changes were too small to make a significant contribution to the activity-related changes in conduction velocity of the vagal C-fibres

    Excitatory amino acids and intracellular pH in motoneurons of the isolated frog spinal cord

    Get PDF
    Double-barrelled pH-sensitive micro-electrodes were used to measure changes of intracellular and extracellular pH in and around motoneurons of the isolated frog spinal cord during application of excitatory amino acids. It was found that N-methyl- -aspartate, quisqualate and kainate produced a concentration-dependent intracellular acidification. Extracellularly, triphasic pH changes (acid-alkaline-acid going pH transients) were observed during the action of these amino acids. The possible significance of such pH changes for the physiological and pathophysiological effects of excitatory amino acids are discussed

    Contribution of CARPA to polystyrene NP effects in pigs

    Get PDF
    Background: It has been proposed that many hypersensitivity reactions to nanopharmaceuticals represent complement (C)-activation-related pseudoallergy (CARPA), and that pigs provide a sensitive animal model to study the phenomenon. However, a recent study suggested that pulmonary hypertension, the pivotal symptom of porcine CARPA, is not mediated by C in cases of polystyrene nanoparticle (PS-NP)-induced reactions. Goals: To characterize PS-NPs and reexamine the contribution of CARPA to their pulmonary reactivity in pigs. Study design: C activation by 200, 500, and 750 nm (diameter) PS-NPs and their opsonization were measured in human and pig sera, respectively, and correlated with hemodynamic effects of the same NPs in pigs in vivo. Methods: Physicochemical characterization of PS-NPs included size, ζ-potential, cryo-transmission electron microscopy, and hydrophobicity analyses. C activation in human serum was measured by ELISA and opsonization of PS-NPs in pig serum by Western blot and flow cytometry. Pulmonary vasoactivity of PS-NPs was quantified in the porcine CARPA model. Results: PS-NPs are monodisperse, highly hydrophobic spheres with strong negative surface charge. In human serum, they caused size-dependent, significant rises in C3a, Bb, and sC5b-9, but not C4d. Exposure to pig serum led within minutes to deposition of C5b-9 and opsonic iC3b on the NPs, and opsonic iC3b fragments (C3dg, C3d) also appeared in serum. PS-NPs caused major hemodynamic changes in pigs, primarily pulmonary hypertension, on the same time scale (minutes) as iC3b fragmentation and opsonization proceeded. There was significant correlation between C activation by different PS-NPs in human serum and pulmonary hypertension in pigs. Conclusion: PS-NPs have extreme surface properties with no relevance to clinically used nanomedicines. They can activate C via the alternative pathway, entailing instantaneous opsonization of NPs in pig serum. Therefore, rather than being solely C-independent reactivity, the mechanism of PS-NP-induced hypersensitivity in pigs may involve C activation. These data are consistent with the “double-hit” concept of nanoparticle-induced hypersensitivity reactions involving both CARPA and C-independent pseudoallergy

    Human serum albumin nanoparticles loaded with phthalocyanine dyes for potential use in photodynamic therapy of atherosclerotic plaques

    Full text link
    Diseases caused by obstruction or rupture of vulnerable plaques in the arterial walls such as cardiovascular infarction or stroke are the leading cause of death in the world. In the present work, we developed human serum albuminnanoparticles loaded by physisorption with zinc phthalocyanine, TT1, mainly used for industrial application as near-infrared photosensitizer and compared these to HSA NPsloaded with the well-known silicone phthalocyanine (Pc4). The use of NIR light allows for better tissue penetration, while the use of nanoparticles permitshigh local concentrations. The particles were characterized and tested for toxicity and stability as well as for their potential use as a contrast agent and NIR photosensitizer for photodynamic therapy in cardiovascular disease. We focused on the distribution of the nanoparticles in RAW264.7macrophage cells and atherosclerotic mice. The nanoparticles had an average size of 120 nm according todynamic light scattering, good loading capacity for zinc phthalocyanine,and satisfying stability in 50% (v/v) fetal bovine serum for 8 hours and in an aqueous environment at 4°C for 4–6 weeks. Under light irradiation we found a high production of singlet oxygen and the products showed no dark toxicity in vitro with macrophages(the target cells in vulnerable plaques),but at a low μg/mL nanoparticleconcentration killed efficiently the macrophagesupon LED illumination. Injection of the contrast agentin atherosclerotic mice led to a visible fluorescence signal of zinc phthalocyaninein the atherosclerotic plaque at 30 minutes and in the lungs with afast clearance of the nanoparticles. Zinc phthalocyanine loaded human serum albumin nanoparticles present an interesting candidate for the visualization and potentially photodynamictreatment of macrophages in atherosclerotic plaquesThe research leading to these results has received funding from FP7-NMP CosmoPHOS-Nano under grant agreement No. 310337. Additional funding was received by the Spanish groups from MINECO (CTQ2017-85393-P) and ERA-NET/MINECO EuroNanoMed2017-191 / PCIN-2017-04

    Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes

    Get PDF
    Intravenously injected nanopharmaceuticals, including PEGylated nanoparticles, induce adverse cardiopulmonary reactions in sensitive human subjects, and these reactions are highly reproducible in pigs. Although the underlying mechanisms are poorly understood, roles for both the complement system and reactive macrophages have been implicated. Here, we show the dominance and importance of robust pulmonary intravascular macrophage clearance of nanoparticles in mediating adverse cardiopulmonary distress in pigs irrespective of complement activation. Specifically, we show that delaying particle recognition by macrophages within the first few minutes of injection overcomes adverse reactions in pigs using two independent approaches. First, we changed the particle geometry from a spherical shape (which triggers cardiopulmonary distress) to either rod- or disk-shape morphology. Second, we physically adhered spheres to the surface of erythrocytes. These strategies, which are distinct from commonly leveraged stealth engineering approaches such as nanoparticle surface functionalization with poly(ethylene glycol) and/or immunological modulators, prevent robust macrophage recognition, resulting in the reduction or mitigation of adverse cardiopulmonary distress associated with nanopharmaceutical administration

    Immunological response to nitroglycerin-loaded shear-responsive liposomes in vitro and in vivo

    Get PDF
    Liposomes formulated from the 1,3-diamidophospholipid Pad-PC-Pad are shear- responsive and thus promising nano-containers to specifically release a vasodilator at stenotic arteries. The recommended preclinical safety tests for therapeutic liposomes of nanometer size include the in vitro assessment of complement activation and the evaluation of the associated risk of complement activation-related pseudo-allergy (CARPA) in vivo. For this reason, we measured complement activation by Pad-PC- Pad formulations in human and porcine sera, along with the nanopharmaceutical- mediated cardiopulmonary responses in pigs. The evaluated formulations comprised of Pad-PC-Pad liposomes, with and without polyethylene glycol on the surface of the liposomes, and nitroglycerin as a model vasodilator. The nitroglycerin incorporation efficiency ranged from 25% to 50%. In human sera, liposome formulations with 20 mg/mL phospholipid gave rise to complement activation, mainly via the alternative pathway, as reflected by the rises in SC5b-9 and Bb protein complex concentrations. Formulations having a factor of ten lower phospholipid content did not result in measurable complement activation. The weak complement activation induced by Pad- PC-Pad liposomal formulations was confirmed by the results obtained by performing an in vivo study in a porcine model, where hemodynamic parameters were monitored continuously. Our study suggests that, compared to FDA-approved liposomal drugs, Pad-PC-Pad exhibits less or similar risks of CARPA
    corecore