35 research outputs found
Dexamethasone implant in the management of diabetic macular edema from clinician’s perspective
Mojca UrbanÄiÄ,1 Ivana GardaševiÄ TopÄiÄ21Eye Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia; 2Department of Ophthalmology, General Hospital in Novo mesto, Ljubljana, SloveniaAbstract: The aim of this article is to provide an overview of characteristics and principles of use of dexamethasone implant in patients with diabetic macular edema (DME). The condensed information about patient selection, dosing, and postinjection management is provided to make the clinician’s decisions easier in real-life practice. DME is a common complication of diabetes and the leading cause of visual loss in the working-age population. Inflammation plays an important role in the pathogenesis of DME. The breakdown of the blood–retinal barrier involves the expression of inflammatory cytokines and growth factors, including vascular endothelial growth factor (VEGF). Steroids have proved to be effective in the treatment of DME by blocking the production of VEGF and other inflammatory cytokines, by inhibiting leukostasis, and by enhancing the barrier function of vascular endothelial cell tight junctions. Dexamethasone intravitreal implant has demonstrated efficacy in the treatment of DME resistant to anti-VEGF therapy and in vitrectomized eyes. Data from clinical trials suggest that dexamethasone implant can be considered as first-line treatment in pseudophakic eyes. Dexamethasone implant is also the first-line therapy in patients not suited for anti-VEGF therapy, pregnant women, and patients unable to return for frequent monitoring. It has been shown that the maximum effect of dexamethasone implant on visual gain and retinal thickness occurs approximately 2 months after injection. Various treatment regimens are used in real-life situations, and reported reinjection intervals were usually <6 months. The number of retreatments needed decreased over time. Treatment algorithms should be personalized. Postinjection management and follow-up should consider potential adverse events such as intraocular pressure elevation and cataract.Keywords: dexamethasone, diabetic macular edema, intravitreal implant, Ozurde
Aggregation-induced emission spectral shift as a measure of local concentration of a pH-activatable rhodamine-based smart probe
Generating activatable probes that report about molecular vicinity through contact-based mechanisms such as aggregation can be very convenient. Specifically, such probes change a particular spectral property only at the intended biologically relevant target. Xanthene derivatives, for example rhodamines, are able to form aggregates. It is typical to examine aggregation by absorption spectroscopy but for microscopy applications utilizing fluorescent probes it is very important to perform characterization by measuring fluorescence spectra. First we show that excitation spectra of aqueous solutions of rhodamine 6G can be very informative about the aggregation features. Next we establish the dependence of the fluorescence emission spectral maximum shift on the dimer concentration. The obtained information helped us confirm the possibility of aggregation of a recently designed and synthesized rhodamine 6G-based pH-activatable fluorescent probe and to study its pH and concentration dependence. The size of the aggregation-induced emission spectral shift at specific position on the sample can be measured by fluorescence microspectroscopy, which at particular pH allows estimation of the local concentration of the observed probe at microscopic level. Therefore, we show that besides aggregation-caused quenching and aggregation-induced emission also aggregation-induced emission spectral shift can be a useful photophysical phenomenon
Design of automatic controllers for model-based OPC with optimal resist threshold determination for improving correction convergence
Regulation of plasma membrane curvature and composition governs essential cellular processes. The material property of bending rigidity describes the energetic cost of membrane deformations and depends on the plasma membrane molecular composition. Because of compositional fluctuations and active processes, it is challenging to measure it in intact cells. Here, we study the plasma membrane using giant plasma membrane vesicles (GPMVs), which largely preserve the plasma membrane lipidome and proteome. We show that the bending rigidity of plasma membranes under varied conditions is correlated to readout from environment-sensitive dyes, which are indicative of membrane order and microviscosity. This correlation holds across different cell lines, upon cholesterol depletion or enrichment of the plasma membrane, and variations in cell density. Thus, polarity- and viscosity-sensitive probes represent a promising indicator of membrane mechanical properties. Additionally, our results allow for identifying synthetic membranes with a few well defined lipids as optimal plasma membrane mimetics
Background reduction in STED-FCS using a bivortex phase mask
Fluorescence correlation spectroscopy (FCS) is a valuable tool to study the molecular dynamics in living cells. When used together with a super-resolution stimulated emission depletion (STED) microscope, STED-FCS can measure diffusion processes on the nanoscale in living cells. In two-dimensional (2D) systems like the cellular plasma membrane, a ring-shaped depletion focus is most commonly used to increase the lateral resolution, leading to more than 25-fold decrease in the observation volume, reaching the relevant scale of supramolecular arrangements. However, STED-FCS faces severe limitations when measuring diffusion in three dimensions (3D), largely due to the spurious background contributions from undepleted areas of the excitation focus that reduce the signal quality and ultimately limit the resolution. In this paper, we investigate how different STED confinement modes can mitigate this issue. By simulations as well as experiments with fluorescent probes in solution and in cells, we demonstrate that the coherent-hybrid (CH) depletion pattern created by a bivortex phase mask reduces background most efficiently and thus provides superior signal quality under comparable reduction of the observation volume. Featuring also the highest robustness to common optical aberrations, CH-STED can be considered the method of choice for reliable STED-FCS-based investigations of 3D diffusion on the subdiffraction scale
Lipid composition but not curvature is a determinant of a low molecular mobility within HIV-1 lipid envelope
Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from where it buds out. Previous studies have shown that the HIV-1 envelope is a very low mobility environment with the diffusion of incorporated proteins two orders of magnitude slower than in plasma membrane. One of the reasons for this difference is thought to be due to HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing. To further refine the model of the molecular mobility on HIV-1 surface, we here investigated the relative importance of membrane composition and curvature in Large Unilamellar Vesicles of different composition and size (0.2-1 Ī¼m) by super-resolution STED microscopy-based fluorescence correlation spectroscopy (STED-FCS) analysis. We find that lipid composition and its rigidity but not membrane curvature play an important role in the decreased molecular mobility on vesicle surface thus confirming that this factor is an essential determinant of HIV-1 low surface mobility. Our results provide further insight into the dynamic properties of the surface of individual HIV-1 particles
z-STED Imaging and Spectroscopy to Investigate Nanoscale Membrane Structure and Dynamics
Super-resolution stimulated emission depletion (STED) microcopy provides optical resolution beyond the diffraction limit. The resolution can be increased laterally (xy) or axially (z). Two-dimensional STED has been extensively used to elucidate the nanoscale membrane structure and dynamics via imaging or combined with spectroscopy techniques such as fluorescence correlation spectroscopy (FCS) and spectral imaging. On the contrary, z-STED has not been used in this context. Here, we show that a combination of z-STED with FCS or spectral imaging enables us to see previously unobservable aspects of cellular membranes. We show that thanks to an axial resolution of ā¼100 nm, z-STED can be used to distinguish axially close-by membranes, early endocytic vesicles, or tubular membrane structures. Combination of z-STED with FCS and spectral imaging showed diffusion dynamics and lipid organization in these structures, respectively
Lipid composition but not curvature is the determinant factor for the low molecular mobility observed on the membrane of virus-like vesicles
Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from which it buds out. Previous studies have shown that the HIV-1 envelope is an environment of very low mobility, with the diffusion of incorporated proteins two orders of magnitude slower than in the plasma membrane. One of the reasons for this difference is thought to be the HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing, which has, until now, been difficult to assess experimentally. To further refine the model of the molecular mobility on the HIV-1 surface, we herein investigated the relative importance of membrane composition and curvature in simplified model membrane systems, large unilamellar vesicles (LUVs) of different lipid compositions and sizes (0.1ā1 Āµm), using super-resolution stimulated emission depletion (STED) microscopy-based fluorescence correlation spectroscopy (STED-FCS). Establishing an approach that is also applicable to measurements of molecule dynamics in virus-sized particles, we found, at least for the 0.1ā1 Āµm sized vesicles, that the lipid composition and thus membrane rigidity, but not the curvature, play an important role in the decreased molecular mobility on the vesiclesā surface. This observation suggests that the composition of the envelope rather than the particle geometry contributes to the previously described low mobility of proteins on the HIV-1 surface. Our vesicle-based study thus provides further insight into the dynamic properties of the surface of individual HIV-1 particles, as well as paves the methodological way towards better characterisation of the properties and function of viral lipid envelopes in general
Lipid composition but not curvature is the determinant factor for the low molecular mobility observed on the membrane of virus-like vesicles
Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from which it buds out. Previous studies have shown that the HIV-1 envelope is an environment of very low mobility, with the diffusion of incorporated proteins two orders of magnitude slower than in the plasma membrane. One of the reasons for this difference is thought to be the HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing, which has, until now, been difficult to assess experimentally. To further refine the model of the molecular mobility on the HIV-1 surface, we herein investigated the relative importance of membrane composition and curvature in simplified model membrane systems, large unilamellar vesicles (LUVs) of different lipid compositions and sizes (0.1ā1 Āµm), using super-resolution stimulated emission depletion (STED) microscopy-based fluorescence correlation spectroscopy (STED-FCS). Establishing an approach that is also applicable to measurements of molecule dynamics in virus-sized particles, we found, at least for the 0.1ā1 Āµm sized vesicles, that the lipid composition and thus membrane rigidity, but not the curvature, play an important role in the decreased molecular mobility on the vesiclesā surface. This observation suggests that the composition of the envelope rather than the particle geometry contributes to the previously described low mobility of proteins on the HIV-1 surface. Our vesicle-based study thus provides further insight into the dynamic properties of the surface of individual HIV-1 particles, as well as paves the methodological way towards better characterisation of the properties and function of viral lipid envelopes in general
Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STEDāFCS
Super-resolution microscopy techniques enable optical imaging in live cells with unprecedented spatial resolution. They unfortunately lack the temporal resolution required to directly investigate cellular dynamics at scales sufficient to measure molecular diffusion. These fast time scales are, on the other hand, routinely accessible by spectroscopic techniques such as fluorescence correlation spectroscopy (FCS). To enable the direct investigation of fast dynamics at the relevant spatial scales, FCS has been combined with super-resolution stimulated emission depletion (STED) microscopy. STEDāFCS has been applied in point or scanning mode to reveal nanoscale diffusion behavior of molecules in live cells. In this protocol, we describe the technical details of performing point STEDāFCS (pSTEDāFCS) and scanning STEDāFCS (sSTEDāFCS) measurements, from calibration and sample preparation to data acquisition and analysis. We give particular emphasis to 2D diffusion dynamics in cellular membranes, using molecules tagged with organic fluorophores. These measurements can be accomplished within 4ā6 h by those proficient in fluorescence imaging
z-STED Imaging and Spectroscopy to Investigate Nanoscale Membrane Structure and Dynamics: supporting dataset
This dataset was used to generate the figures in the paper:
Barbotin A, UrbanÄiÄ I, Galiani S, Eggeling C, Booth M, Sezgin E, z-STED imaging and spectroscopy to investigate nanoscale
membrane structure and dynamics, Biophysical Journal (2020), doi: https://doi.org/10.1016/j.bpj.2020.04.006.
It contains the raw data as well as the data analysis code in Python (when applicable). The compressed archive contains subfolders and instructions included in the relevant folders STED microscopy data of lipids in model systems and living cells