6,762 research outputs found

    Tackling Challenges in Seebeck Coefficient Measurement of Ultra-High Resistance Samples with an AC Technique

    Get PDF
    Seebeck coefficient is a widely studied semiconductor property. Conventional Seebeck coefficient measurements are based on DC voltage measurement. Normally this is performed on samples with moderate resistances (e.g., below a few MΩ level). Certain semiconductors are intrinsic and highly resistive. Many examples can be found in optical and photovoltaic materials. The hybrid halide perovskites that have gained extensive attention recently are a good example. Despite great attention from the materials and physics communities, few successful studies exist of the Seebeck coefficient of these compounds, for example CH3NH3PbI3. An AC-technique-based Seebeck coefficient measurement is reported, which makes high-quality Seebeck voltage measurements on samples with resistances up to the 100 GΩ level. This is achieved through a specifically designed setup to enhance sample isolation and increase capacitive impedance. As a demonstration, Seebeck coefficient measurement of a CH3NH3PbI3 thin film is performed at dark, with sample resistance 150 GΩ, and found S = +550 µV K−1. The strategy reported could be applied to the studies of fundamental transport parameters of all intrinsic semiconductors that have not been feasible

    Upscaling fluxes from towers to regions, continents and global scales using datadriven approaches

    Get PDF
    Quantifying the current carbon cycle of terrestrial ecosystems requires that we translate spatially sparse measurements into consistent, gridded flux estimates at the regional scale. This is particularly challenging in heterogeneous regions such as the northern forests of the United States. We use a network of 17 eddy covariance flux towers deployed across the Upper Midwest region of northern Wisconsin and Michigan and upscale flux observations from towers to the regional scale. This region is densely instrumented and provides a unique test bed for regional upscaling. We develop a simple Diagnostic Carbon Flux Model (DCFM) and use flux observations and a data assimilation approach to estimate the model parameters. We then use the optimized model to produce gridded flux estimates across the region. We find that model parameters vary not only across plant functional types (PFT) but also within a given PFT. Our results show that the parameter estimates from a single site are not representative of the parameter values of a given PFT; cross-site (or joint) optimization using observations from multiple sites encompassing a range of site and climate conditions considerably improves the representativeness and robustness of parameter estimates. Parameter variability within a PFT can result in substantial variability in regional flux estimates. We also find that land cover representation including land cover heterogeneity and the spatial resolution and accuracy of land cover maps can lead to considerable uncertainty in regional flux estimates. In heterogeneous, complex regions, detailed and accurate land cover maps are essential for accurate estimation of regional fluxes

    Upscaling carbon fluxes from towers to the regional scale: Influence of parameter variability and land cover representation on regional flux estimates

    Get PDF
    Quantifying the current carbon cycle of terrestrial ecosystems requires that we translate spatially sparse measurements into consistent, gridded flux estimates at the regional scale. This is particularly challenging in heterogeneous regions such as the northern forests of the United States. We use a network of 17 eddy covariance flux towers deployed across the Upper Midwest region of northern Wisconsin and Michigan and upscale flux observations from towers to the regional scale. This region is densely instrumented and provides a unique test bed for regional upscaling. We develop a simple Diagnostic Carbon Flux Model (DCFM) and use flux observations and a data assimilation approach to estimate the model parameters. We then use the optimized model to produce gridded flux estimates across the region. We find that model parameters vary not only across plant functional types (PFT) but also within a given PFT. Our results show that the parameter estimates from a single site are not representative of the parameter values of a given PFT; cross-site (or joint) optimization using observations from multiple sites encompassing a range of site and climate conditions considerably improves the representativeness and robustness of parameter estimates. Parameter variability within a PFT can result in substantial variability in regional flux estimates. We also find that land cover representation including land cover heterogeneity and the spatial resolution and accuracy of land cover maps can lead to considerable uncertainty in regional flux estimates. In heterogeneous, complex regions, detailed and accurate land cover maps are essential for accurate estimation of regional fluxes

    The Shears Mechanism in 142Gd in the Skyrme-Hartree-Fock Method with the Tilted-Axis Cranking

    Get PDF
    We report on the first Skyrme-Hartree-Fock calculations with the tilted-axis cranking in the context of magnetic rotation. The mean field symmetries, differences between phenomenological and self-consistent methods and the generation of shears-like structures in the mean field are discussed. Significant role of the time-odd spin-spin effective interaction is pointed out. We reproduce the shears mechanism, but quantitative agreement with experiment is rather poor. It may have to do with too large core polarization, lack of pairing correlations or properties of the Skyrme force.Comment: Presented at the XXVII Mazurian Lakes School of Physics, September 2-9 2001, Krzyze, Poland, Submitted to Acta Physica Polonic

    Mucosal immune responses following intestinal nematode infection.

    Get PDF
    In most natural environments, the large majority of mammals harbour parasitic helminths that often live as adults within the intestine for prolonged periods (1-2 years). Although these organisms have been eradicated to a large extent within westernized human populations, those living within rural areas of developing countries continue to suffer from high infection rates. Indeed, recent estimates indicate that approximately 2.5 billion people worldwide, mainly children, currently suffer from infection with intestinal helminths (also known as geohelminths and soil-transmitted helminths) . Paradoxically, the eradication of helminths is thought to contribute to the increased incidence of autoimmune diseases and allergy observed in developed countries. In this review, we will summarize our current understanding of host-helminth interactions at the mucosal surface that result in parasite expulsion or permit the establishment of chronic infections with luminal dwelling adult worms. We will also provide insight into the adaptive immune mechanisms that provide immune protection against re-infection with helminth larvae, a process that is likely to be key to the future development of successful vaccination strategies. Lastly, the contribution of helminths to immune modulation and particularly to the treatment of allergy and inflammatory bowel disease will be discussed

    Global behavior of cosmological dynamics with interacting Veneziano ghost

    Full text link
    In this paper, we shall study the dynamical behavior of the universe accelerated by the so called Veneziano ghost dark energy component locally and globally by using the linearization and nullcline method developed in this paper. The energy density is generalized to be proportional to the Hawking temperature defined on the trapping horizon instead of Hubble horizon of the Friedmann-Robertson-Walker (FRW) universe. We also give a prediction of the fate of the universe and present the bifurcation phenomenon of the dynamical system of the universe. It seems that the universe could be dominated by dark energy at present in some region of the parameter space.Comment: 8 pages, 7 figures, accepted for publication in JHE

    A composite reference section for terminal Proterozoic strata of southern Namibia

    Get PDF
    Integrated sequence stratigraphic and chemostratigraphic data yield a framework for correlations of stratigraphic units in the terminal Proterozoic to Cambrian Witvlei and Nama Groups of Namibia. Coupled with precise U-Pb zircon age constraints, these correlations make it possible to construct a composite reference section for use in calibrating terminal Proterozoic chronostratigraphy. The Namibian reference section starts with two distinct glacial horizons and extends up to within 1 million years of the Proterozoic-Cambrian boundary. The two glacial horizons may represent each of two distinct Varanger-age glaciations better known from the North Atlantic region. From the higher of the two glacial horizons up, the composite stratigraphy preserves one of the thickest and most complete available records of carbon-isotope variability in post-Varanger terminal Proterozoic seawater. Four carbon-isotope chemostratigraphic intervals are recognized: (1) a postglacial negative δ^(13)C excursion (Npg interval); (2) a rising interval (Pr interval) of increasing positive delta 13 C values; (3) a falling interval (Pf interval) characterized by decreasing positive δ^(13)C and culminating in near zero or negative values; and (4) an interval of moderately positive, relatively invariant δ^(13)C values (I interval) that extends up to the unconformity that contains the Proterozoic-Cambrian boundary. Each of these chemostratigraphic intervals can be recognized in widely separated correlative sections around the world. By comparing sediment accumulation rate in the radiometrically calibrated Namibian stratigraphy with sediment accumulation rates in correlative sections in Arctic Canada and Oman, a maximum age of 564 Ma is estimated for the end of the younger Varanger glaciation, 25 m.y. younger than previous estimates

    The problem of the high mass of the hot component in the recurrent nova T Coronae Borealis solved after 38 years

    Get PDF
    In this paper, we present long-term spectroscopic observations of the recurrent nova (RN) T CrB obtained between the years 1985 and 1996 using 1.02 m and 2.34 m telescopes of the Vainu Bappu Observatory in India and the long-term photoelectric photometry of the object obtained mainly at the Skalnaté Pleso Observatory and at the Hlohovec Observatory in Slovakia. On the basis of our results, we have returned to the re-analysis of the old radial-velocity measurements published by Kraft (1958). The results obtained solve unambiguously the problem of the apparently too high mass of the hot component of T CrB, unacceptable if it has to be a white dwarf (WD), as several independent lines of evidence suggest

    Signal peptide peptidases and gamma-secretase: Cousins of the same protease family?

    Get PDF
    Signal peptide peptidase (SPIP) is an unusual aspartyl protease, which mediates clearance of signal peptides by proteolysis within the endoplasmic reticulum (ER). Like presenilins, which provide the proteolytically active subunit of the,gamma-secretase complex, SPP contains a conserved GxGD motif in its C-terminal domain which is critical for its activity. While SPIP is known to be an aspartyl protease of the GxGD type, several presenilin homologues/SPP-like proteins (PSHs/ SPPL) of unknown function have been identified by database searches. In contrast to SPP and SPPL3, which are both restricted to the endoplasmic reticulum, SPPL2b is targeted through the secretory pathway to endosomes/lysosomes. As suggested by the differential subcellular localization of SPPL2b and SPPL3 distinct phenotypes were found upon antisense gripNA-mediated knockdown in zebrafish. spp and sppl3 knockdowns in zebrafish result in cell death within the central nervous system, whereas reduction of sppl2b expression causes erythrocyte accumulation in an enlarged caudal vein. Moreover, expression of D/A mutants of the putative C-terminal active sites of spp, sppl2, and spp13 produced phenocopies of the respective knockdown phenotypes. These data suggest that all investigated PSHs/SPPLs are members of the novel family of GxGD aspartyl proteases. More recently, it was shown that SPPL2b utilizes multiple intramembrane cleavages to liberate the TNF(x intracellular domain into the cytosol and to release the C-terminal counterpart into the lumen. These findings suggest common principles of intramembrane proteolysis by GxGD type aspartyl proteases. In this article,we will review the similarities of SPPs and gamma-secretase based on recent findings by us and others
    corecore