11 research outputs found
Classification and monomer-by-monomer annotation dataset of suprachromosomal family 1 alpha satellite higher-order repeats in hg38 human genome assembly
In the latest hg38 human genome assembly, centromeric gaps has been filled in by alpha satellite (AS) reference models (RMs) which are statistical representations of homogeneous higher-order repeat (HOR) arrays that make up the bulk of the centromeric regions. We analyzed these models to compose an atlas of human AS HORs where each monomer of a HOR was represented by a number of its polymorphic sequence variants. We combined these data and HMMER sequence analysis platform to annotate AS HORs in the assembly. This led to discovery of a new type of low copy number highly divergent HORs which were not represented by RMs. These were included in the dataset. The annotation can be viewed as UCSC Genome Browser custom track (the HOR-track) and used together with our previous annotation of AS suprachromosomal families (SFs) in the same assembly, where each AS monomer can be viewed in its genomic context together with its classification into one of the 5 major SFs (the SF-track). To catalog the diversity of AS HORs in the human genome we introduced a new naming system. Each HOR received a name which showed its SF, chromosomal location and index number. Here we present the first installment of the HOR-track covering only the 17 HORs that belong to SF1 which forms live functional centromeres in chromosomes 1, 3, 5, 6, 7, 10, 12, 16 and 19 and also a large number of minor dead HOR domains, both homogeneous and divergent. Monomer-by-monomer HOR annotation used for this dataset as opposed to annotation of whole HOR repeats provides for mapping and quantification of various structural variants of AS HORs which can be used to collect data on inter-individual polymorphism of AS
PCU: The programmable culling unit
Culling techniques have always been a central part of computer graphics, but graphics hardware still lack efficient and flexible support for culling. To improve the situation, we introduce the programmable culling unit, which is as flexible as the fragment program unit and capable of quickly culling entire blocks of fragments. Furthermore, it is very easy for the developer to use the PCU as culling programs can be automatically derived from fragment programs containing a discard instruction. Our PCU can be integrated into an existing fragment program unit with a modest hardware overhead of only about 10%. Using the PCU, we have observed shader speedups between 1.4 and 2.1 for relevant scenes
Complete genomic and epigenetic maps of human centromeres
Existing human genome assemblies have almost entirely excluded repetitive sequences within and near centromeres, limiting our understanding of their organization, evolution, and functions, which include facilitating proper chromosome segregation. Now, a complete, telomere-to-telomere human genome assembly (T2T-CHM13) has enabled us to comprehensively characterize pericentromeric and centromeric repeats, which constitute 6.2% of the genome (189.9 megabases). Detailed maps of these regions revealed multimegabase structural rearrangements, including in active centromeric repeat arrays. Analysis of centromere-associated sequences uncovered a strong relationship between the position of the centromere and the evolution of the surrounding DNA through layered repeat expansions. Furthermore, comparisons of chromosome X centromeres across a diverse panel of individuals illuminated high degrees of structural, epigenetic, and sequence variation in these complex and rapidly evolving regions
Recommended from our members
Complete genomic and epigenetic maps of human centromeres.
Existing human genome assemblies have almost entirely excluded repetitive sequences within and near centromeres, limiting our understanding of their organization, evolution, and functions, which include facilitating proper chromosome segregation. Now, a complete, telomere-to-telomere human genome assembly (T2T-CHM13) has enabled us to comprehensively characterize pericentromeric and centromeric repeats, which constitute 6.2% of the genome (189.9 megabases). Detailed maps of these regions revealed multimegabase structural rearrangements, including in active centromeric repeat arrays. Analysis of centromere-associated sequences uncovered a strong relationship between the position of the centromere and the evolution of the surrounding DNA through layered repeat expansions. Furthermore, comparisons of chromosome X centromeres across a diverse panel of individuals illuminated high degrees of structural, epigenetic, and sequence variation in these complex and rapidly evolving regions
The complete sequence of a human genome.
Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion-base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies
Recommended from our members
The complete sequence of a human genome.
Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion-base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies