53 research outputs found

    Mycosynthesis of metal-containing nanoparticles-fungal metal resistance and mechanisms of synthesis

    Get PDF
    In the 21st century, nanomaterials play an increasingly important role in our lives with applications in many sectors, including agriculture, biomedicine, and biosensors. Over the last two decades, extensive research has been conducted to find ways to synthesise nanoparticles (NPs) via mediation with fungi or fungal extracts. Mycosynthesis can potentially be an energy-efficient, highly adjustable, environmentally benign alternative to conventional physico-chemical procedures. This review investigates the role of metal toxicity in fungi on cell growth and biochemical levels, and how their strategies of resistance, i.e., metal chelation, biomineral formation, biosorption, bioaccumulation, compartmentalisation, and efflux of metals from cells, contribute to the synthesis of metal-containing NPs used in different applications, e.g., biomedical, antimicrobial, catalytic, biosensing, and precision agriculture. The role of different synthesis conditions, including that of fungal biomolecules serving as nucleation centres or templates for NP synthesis, reducing agents, or capping agents in the synthesis process, is also discussed. The authors believe that future studies need to focus on the mechanism of NP synthesis, as well as on the influence of such conditions as pH, temperature, biomass, the concentration of the precursors, and volume of the fungal extracts on the efficiency of the mycosynthesis of NPs.Web of Science2322art. no. 1408

    Mycosynthesis of metal-containing nanoparticles - Synthesis by ascomycetes and basidiomycetes and their application

    Get PDF
    Fungi contain species with a plethora of ways of adapting to life in nature. Consequently, they produce large amounts of diverse biomolecules that can be generated on a large scale and in an affordable manner. This makes fungi an attractive alternative for many biotechnological processes. Ascomycetes and basidiomycetes are the most commonly used fungi for synthesis of metal-containing nanoparticles (NPs). The advantages of NPs created by fungi include the use of non-toxic fungus-produced biochemicals, energy efficiency, ambient temperature, pressure conditions, and the ability to control and tune the crystallinity, shape, and size of the NPs. Furthermore, the presence of biomolecules might serve a dual function as agents in NP formation and also capping that can tailor the (bio)activity of subsequent NPs. This review summarizes and reviews the synthesis of different metal, metal oxide, metal sulfide, and other metal-based NPs mediated by reactive media derived from various species. The phyla ascomycetes and basidiomycetes are presented separately. Moreover, the practical application of NP mycosynthesis, particularly in the fields of biomedicine, catalysis, biosensing, mosquito control, and precision agriculture as nanofertilizers and nanopesticides, has been studied so far. Finally, an outlook is provided, and future recommendations are proposed with an emphasis on the areas where mycosynthesized NPs have greater potential than NPs synthesized using physicochemical approaches. A deeper investigation of the mechanisms of NP formation in fungi-based media is needed, as is a focus on the transfer of NP mycosynthesis from the laboratory to large-scale production and application.Web of Science241art. no. 30

    Role of exopolysaccharides of Pseudomonas in heavy metal removal and other remediation strategies

    Get PDF
    Pseudomonas biofilms have been studied intensively for several decades and research outcomes have been successfully implemented in various medical and agricultural applications. Research on biofilm synthesis and composition has also overlapped with the objectives of environmental sciences, since biofilm components show exceptional physicochemical properties applicable to remediation techniques. Especially, exopolysaccharides (ExPs) have been at the center of scientific interest, indicating their potential in solving the environmental issues of heavy metal land and water contamination via sorptive interactions and flocculation. Since exposure to heavy metal via contaminated water or soil poses an imminent risk to the environment and human health, ExPs provide an interesting and viable solution to this issue, alongside other effective and green remedial techniques (e.g., phytostabilization, implementation of biosolids, and biosorption using agricultural wastes) aiming to restore contaminated sites to their natural, pollution-free state, or to ameliorate the negative impact of heavy metals on the environment. Thus, we discuss the plausible role and performance of Pseudomonas ExPs in remediation techniques, aiming to provide the relevant available and comprehensive information on ExPs' biosynthesis and their usage in heavy metal remediation or other environmental applications, such as wastewater treatment via bioflocculation and soil remediation.Web of Science1420art. no. 425

    Field application of ZnO and TiO2 nanoparticles on agricultural plants

    Get PDF
    Engineered nanoparticles (ENPs) have potential application in precision farming and sustainable agriculture. Studies have shown that ENPs enhance the efficiency of the delivery of agrochemicals and thus, have the potential to positively affect the environment, thereby improving the growth and health of the crops. However, the majority of the research on the effects of ENPs on plants and in agricultural applications have been limited to controlled laboratory conditions. These conditions do not fully consider various aspects inherent to the growth of agricultural plants in fields under changing weather and climate. Some of the most investigated ENPs in the agricultural research area are ZnO nanoparticles (ZnO NPs) and TiO2 nanoparticles (TiO2 NPs). ZnO NPs have the potential to increase crop production and stress resistance, mainly by the slow release of Zn ions to crops. Unlike ZnO NPs, TiO2 NPs have less well-understood means of action, and are generally considered as plant growth promoter. This mini review presents information compiled for ZnO and TiO2 NPs(,) their influence on agricultural plants with emphasis on particularly effect on plant growth, nutrient distribution and pollution remediation under field conditions. It is concluded that in order to gain a broader perspective, more field studies are needed, particularly multigeneration studies, to fully understand the effects of the ENPs on agricultural plants' growth and improvement of their health.Web of Science1111art. no. 228

    Fungus Aspergillus niger processes exogenous zinc nanoparticles into a biogenic oxalate mineral

    Get PDF
    Zinc oxide nanoparticles (ZnO NPs) belong to the most widely used nanoparticles in both commercial products and industrial applications. Hence, they are frequently released into the environment. Soil fungi can affect the mobilization of zinc from ZnO NPs in soils, and thus they can heavily influence the mobility and bioavailability of zinc there. Therefore, ubiquitous soil fungus Aspergillus niger was selected as a test organism to evaluate the fungal interaction with ZnO NPs. As anticipated, the A. niger strain significantly affected the stability of particulate forms of ZnO due to the acidification of its environment. The influence of ZnO NPs on fungus was compared to the aqueous Zn cations and to bulk ZnO as well. Bulk ZnO had the least effect on fungal growth, while the response of A. niger to ZnO NPs was comparable with ionic zinc. Our results have shown that soil fungus can efficiently bioaccumulate Zn that was bioextracted from ZnO. Furthermore, it influences Zn bioavailability to plants by ZnO NPs transformation to stable biogenic minerals. Hence, a newly formed biogenic mineral phase of zinc oxalate was identified after the experiment with A. niger strain's extracellular metabolites highlighting the fungal significance in zinc biogeochemistry.Web of Science64art. no. 21

    Aerobic release of arsenic and antimony from mine soils by biostimulation of indigenous microbial activity and bioaugmentation with Cupriavidus genera of bacteria

    Get PDF
    Background and Aims Bioremediation of soils contaminated with metal(loid)s is an attractive research area due to its sustainability and economic benefits. In the Slovak Republic, there are several abandoned mines containing high concentrations of arsenic (As) and antimony (Sb). This calls for new options for removing these hazardous metalloids from contaminated substrates. Studies on bioleaching of soils co-contaminated with both metalloids are very rare. This study aimed to test the effectiveness of bioleaching of soils heavily co-contaminated with As and Sb (up to 1463 mg.kg–1 and 5825 mg.kg–1, respectively) at a former stibnite mining site (Poproč, eastern Slovakia) through biostimulation and bioaugmentation. Methods Bioleaching of As and Sb from four soils was induced by biostimulation of autochthonous microflora with Sabouraud medium (SAB) and SAB+glucose, and bioaugmentation of the soil with bacterial strains Cupriavidus oxalaticus and Cupriavidus metallidurans. Soil samples were subjected to determination of physico-chemical properties, microbiological parameters, and additional mineralogical analysis. Results An inverse relationship between the total metalloid concentration and the microbial diversity was confirmed. In experiments with Cupriavidus metallidurans and Cupriavidus oxalaticus, mean bioleached As fractions were 37.6% and 41.3%, while Sb bioleaching was significantly lower, ranging between 17.0–26.2%. The mean bioleached fraction of As and Sb using SAB was 40.7% and 14.4%, respectively. The addition of glucose to SAB increased As bioleaching (50.7%) but not that of Sb. Conclusion Collectively, the results highlighted a role of microorganisms in the mobility of metalloids in soils with their prospective applications in remediation of contaminated sites.Web of Science4971-219717

    Basic soil properties as a factor controlling the occurrence and intensity of water repellency in rankers of the White Carpathians

    Get PDF
    Water repellency in soils is controlled by many different factors, basic physical and chemical properties might be considered the crucial ones. For the purpose of this study, 12 sites were selected and sampled (0–20 cm depth) in the White Carpathians. Repellency tests were conducted under laboratory conditions in triplicate using water drop penetration time (WDPT) test and the molarity of ethanol droplet (MED) test. Results of WDPT measurements showed that three samples were marked by slight to extreme water repellency. Regarding the relationship between WDPT/MED and tested soil properties, the highest value of correlation coefficient was calculated for soil organic carbon (r = 0.706; p < 0.05), suggesting there is a positive, statistically significant correlation between repellency severity and total carbon content. A negative relationship between repellency and soil reaction/silt/silt + clay contents of studied soils was found. Samples taken from the surface horizon of arable soils showed no repellency

    Heterotrophic leaching and its application in biohydrometallurgy

    No full text
    Web of Science108111045104

    Unexpected formation of Ag2SO4 microparticles from Ag2S nanoparticles synthesised using poplar leaf extract

    No full text
    There are several methods for inorganic nanoparticle synthesis. However, these methods usually need high energy and generate toxic waste. Therefore, we explored biocrystallisation as a cheaper and safer method. We used poplar leaf extract to produce silver-based nanoparticles. Here, we studied nanoparticle crystallisation under various conditions such as light–dark cycles. Silver nanoparticles were analysed by transmission electron microscopy for particle morphology and size distribution, selected area electron diffraction for crystal structure and energy-dispersive X-ray for elemental analysis. Results show that individual Ag2S acanthite nanoparticles are formed after 3 days of dynamic cultivation in the dark. These particles have a typical spherical shape, which is found also in the form of aggregates with vermicular structure. These particles were unexpectedly transformed into Ag2SO4 micro-sized particles of good dispersity and high crystallinity upon application of light–dark cycles. Overall, our finding shows that poplar leaf extract is a good medium to catalyse the formation of silver-based nanoparticles.Web of Science12455655

    Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions

    Get PDF
    It has been shown that the foliar application of inorganic nano-materials on cereal plants during their growth cycle enhances the rate of plant productivity by providing a micro-nutrient source. We therefore studied the effects of foliarly applied ZnO nanoparticles (ZnO NPs) on Setaria italica L. foxtail millet's quantitative, nutritional, and physiological parameters. Scanning electron microscopy showed that the ZnO NPs have an average particle size under 20 nm and dominant spherically shaped morphology. Energy dispersive X-ray spectrometry then confirmed ZnO NP homogeneity, and X-ray diffraction verified their high crystalline and wurtzite-structure symmetry. Although plant height, thousand grain weight, and grain yield quantitative parameters did not differ statistically between ZnO NP-treated and untreated plants, the ZnO NP-treated plant grains had significantly higher oil and total nitrogen contents and significantly lower crop water stress index (CWSI). This highlights that the slow-releasing nano-fertilizer improves plant physiological properties and various grain nutritional parameters, and its application is therefore especially beneficial for progressive nanomaterial-based industries.Web of Science911art. no. 155
    corecore