7 research outputs found

    Genome‑wide association analyses of leaf rust resistance in cultivated emmer wheat

    Get PDF
    Leaf rust, caused by Puccinia triticina (Pt), constantly threatens durum (Triticum turgidum ssp. durum) and bread wheat (Triticum aestivum) production worldwide. A Pt race BBBQD detected in California in 2009 poses a potential threat to durum production in North America because resistance source to this race is rare in durum germplasm. To find new resistance sources, we assessed a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for seedling resistance to BBBQD and for adult resistance to a mixture of durum-specific races BBBQJ, CCMSS, and MCDSS in the field, and genotyped the panel using genotype-by-sequencing (GBS) and the 9 K SNP (Single Nucleotide Polymorphism) Infinium array. The results showed 24 and nine accessions consistently exhibited seedling and adult resistance, respectively, with two accessions providing resistance at both stages. We performed genome-wide association studies using 46,383 GBS and 4,331 9 K SNP markers and identified 15 quantitative trait loci (QTL) for seedling resistance located mostly on chromosomes 2B and 6B, and 11 QTL for adult resistance on 2B, 3B and 6A. Of these QTL, one might be associated with leaf rust resistance (Lr) gene Lr53, and two with the QTL previously reported in durum or hexaploid wheat. The remaining QTL are potentially associated with new Lr genes. Further linkage analysis and gene cloning are necessary to identify the causal genes underlying these QTL. The emmer accessions with high levels of resistance will be useful for developing mapping populations and adapted durum germplasm and varieties with resistance to the durum-specific races

    Comparative Genome Analyses of Plant Rust Pathogen Genomes Reveal a Confluence of Pathogenicity Factors to Quell Host Plant Defense Responses

    No full text
    Switchgrass rust caused by Puccinia novopanici (P. novopanici) has the ability to significantly affect the biomass yield of switchgrass, an important biofuel crop in the United States. A comparative genome analysis of P. novopanici with rust pathogen genomes infecting monocot cereal crops wheat, barley, oats, maize and sorghum revealed the presence of larger structural variations contributing to their genome sizes. A comparative alignment of the rust pathogen genomes resulted in the identification of collinear and syntenic relationships between P. novopanici and P. sorghi; P. graminis tritici 21–0 (Pgt 21) and P. graminis tritici Ug99 (Pgt Ug99) and between Pgt 21 and P. triticina (Pt). Repeat element analysis indicated a strong presence of retro elements among different Puccinia genomes, contributing to the genome size variation between ~1 and 3%. A comparative look at the enriched protein families of Puccinia spp. revealed a predominant role of restriction of telomere capping proteins (RTC), disulfide isomerases, polysaccharide deacetylases, glycoside hydrolases, superoxide dismutases and multi-copper oxidases (MCOs). All the proteomes of Puccinia spp. share in common a repertoire of 75 secretory and 24 effector proteins, including glycoside hydrolases cellobiohydrolases, peptidyl-propyl isomerases, polysaccharide deacetylases and protein disulfide-isomerases, that remain central to their pathogenicity. Comparison of the predicted effector proteins from Puccinia spp. genomes to the validated proteins from the Pathogen–Host Interactions database (PHI-base) resulted in the identification of validated effector proteins PgtSR1 (PGTG_09586) from P. graminis and Mlp124478 from Melampsora laricis across all the rust pathogen genomes

    Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance

    No full text
    Plant diseases are among the major causes of crop yield losses around the world. To confer disease resistance, conventional breeding relies on the deployment of single resistance (R) genes. However, this strategy has been easily overcome by constantly evolving pathogens. Disabling susceptibility (S) genes is a promising alternative to R genes in breeding programs, as it usually offers durable and broad-spectrum disease resistance. In Arabidopsis, the S gene DMR6 (AtDMR6) encodes an enzyme identified as a susceptibility factor to bacterial and oomycete pathogens. Here, we present a model-to-crop translational work in which we characterize two AtDMR6 orthologs in tomato, SlDMR6-1 and SlDMR6-2. We show that SlDMR6-1, but not SlDMR6-2, is up-regulated by pathogen infection. In agreement, Sldmr6-1 mutants display enhanced resistance against different classes of pathogens, such as bacteria, oomycete, and fungi. Notably, disease resistance correlates with increased salicylic acid (SA) levels and transcriptional activation of immune responses. Furthermore, we demonstrate that SlDMR6-1 and SlDMR6-2 display SA-5 hydroxylase activity, thus contributing to the elucidation of the enzymatic function of DMR6. We then propose that SlDMR6 duplication in tomato resulted in subsequent subfunctionalization, in which SlDMR6-2 specialized in balancing SA levels in flowers/fruits, while SlDMR6-1 conserved the ability to fine-tune SA levels during pathogen infection of the plant vegetative tissues. Overall, this work not only corroborates a mechanism underlying SA homeostasis in plants, but also presents a promising strategy for engineering broad-spectrum and durable disease resistance in crops

    Performance of [18F]flutemetamol amyloid imaging against the neuritic plaque component of CERAD and the current (2012) NIA‐AA recommendations for the neuropathologic diagnosis of Alzheimer’s disease

    Full text link
    IntroductionPerformance of the amyloid tracer [18F]flutemetamol was evaluated against three pathology standard of truth (SoT) measures including neuritic plaques (CERAD “original” and “modified” and the amyloid component of the 2012 NIA‐AA guidelines).MethodsAfter [18F]flutemetamol imaging, 106 end‐of‐life patients who died underwent postmortem brain examination for amyloid plaque load. Blinded positron emission tomography scan interpretations by five independent electronically trained readers were compared with pathology measures.ResultsBy SoT, sensitivity and specificity of majority image interpretations were, respectively, 91.9% and 87.5% with “original CERAD,” 90.8% and 90.0% with “modified CERAD,” and 85.7% and 100% with the 2012 NIA‐AA criteria.DiscussionThe high accuracy of either CERAD criteria suggests that [18F]flutemetamol predominantly reflects neuritic amyloid plaque density. However, the use of CERAD criteria as the SoT can result in some false‐positive results because of the presence of diffuse plaques, which are accounted for when the positron emission tomography read is compared with the 2012 NIA‐AA criteria.HighlightsDetermination of the accuracy of [18F]flutemetamol image read against Aβ at autopsy.High sensitivity and specificity to 3 neuropathologic criteria as Standards of Truth.Images are 100% specific when the SoT reflects both neuritic and diffuse plaques.This study has the largest autopsy validation cohort for Aβ PET tracers to date.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152734/1/dad2jdadm201706001.pd
    corecore