634 research outputs found

    A payload to evaluate photodiodes for the detection of soft and hard x rays in a space environment using a Get Away Special

    Get PDF
    We propose to use the Get Away Special (GAS) facility to evaluate P-intrinsic-N (PIN) detectors and avalanche photodiodes (APD's) for the detection of both solar and nonsolar soft and hard x rays. We would like to fly both types of silicon detectors for the direct detection of the x ray photons in the energy range from 1 to 30 keV with an energy resolution of about 1 keV. We would also like to use both types of photodiodes viewing CsI(Tl) scintillators to extend the energy range up to 1 MeV with -6 percent resolution at 660 keV. Solar flares would be detected with this instrumentation during periods of solar pointing providing high energy resolution spectra with high time resolution. Similar data would be obtained in the scanning mode on nonsolar transient and steady x ray sources with the same instrumentation. A commandable door over the detectors would be required to allow measurements to be made as low as 1 keV

    Development of eye-safe lidar for aerosol measurements

    Get PDF
    Research is summarized on the development of an eye safe Raman conversion system to carry out lidar measurements of aerosol and clouds from an airborne platform. Radiation is produced at the first Stokes wavelength of 1.54 micron in the eye safe infrared, when methane is used as the Raman-active medium, the pump source being a Nd:YAG laser at 1.064 micron. Results are presented for an experimental study of the dependence of the 1.54 micron first Stokes radiation on the focusing geometry, methane gas pressure, and pump energy. The specific new technique developed for optimizing the first Stokes generation involves retroreflecting the backward-generated first Stokes light back into the Raman cell as a seed Stokes beam which is then amplified in the temporal tail of the pump beam. Almost 20 percent conversion to 1.54 micron is obtained. Complete, assembled hardware for the Raman conversion system was delivered to the Goddard Space Flight Center for a successful GLOBE flight (1989) to measure aerosol backscatter around the Pacific basin

    Globalization and Hegemony Shift: Are States Merely Agents of Corporate Capitalism?

    Get PDF
    Since the advent of state sovereignty with the Peace of Westphalia, powerful Western nations have determined and applied international law in a manner that advance their national interests. In short, the international legal process has been a mechanism of hegemony, and powerful Western nations have been hegemons through this process over less-developed countries. Since the 1990s, however, the fall of the Soviet Union, the spread of technology, and the advent of multinational corporations have led to a new order wherein corporate capitalism has become a primary force in international law and states mostly serve corporate interests. This new order was seen in action in Libya, where Muammar Gaddafi was recently overthrown by rebels who received aid from Western organizations, mostly because of Gaddafi’s unreliable history of partnering with Western corporations

    Synchronization of globally coupled two-state stochastic oscillators with a state dependent refractory period

    Full text link
    We present a model of identical coupled two-state stochastic units each of which in isolation is governed by a fixed refractory period. The nonlinear coupling between units directly affects the refractory period, which now depends on the global state of the system and can therefore itself become time dependent. At weak coupling the array settles into a quiescent stationary state. Increasing coupling strength leads to a saddle node bifurcation, beyond which the quiescent state coexists with a stable limit cycle of nonlinear coherent oscillations. We explicitly determine the critical coupling constant for this transition

    Memory-induced anomalous dynamics: emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model

    Full text link
    We present a random walk model that exhibits asymptotic subdiffusive, diffusive, and superdiffusive behavior in different parameter regimes. This appears to be the first instance of a single random walk model leading to all three forms of behavior by simply changing parameter values. Furthermore, the model offers the great advantage of analytic tractability. Our model is non-Markovian in that the next jump of the walker is (probabilistically) determined by the history of past jumps. It also has elements of intermittency in that one possibility at each step is that the walker does not move at all. This rich encompassing scenario arising from a single model provides useful insights into the source of different types of asymptotic behavior

    Persistent time intervals between features in solar flare hard X-ray emission

    Get PDF
    Several solar hard X-ray events (greater than 100 keV) were observed simultaneously with identical instruments on the Venera 11, 12, 13, 14, and Prognoz spacecraft. High time resolution (= 2 ms) data were stored in memory when a trigger occurred. The observations of modulation are presented with a period of 1.6 s for the event on December 3, 1978. Evidence is also presented for fast time fluctuations from an event on November 6, 1979, observed from Venera 12 and another on September 6, 1981, observed from the Solar Maximum Mission. Power spectrum analysis, epoch folding, and Monte Carlo simulation were used to evaluate the statistical significance of persistent time delays between features. The results are discussed in light of the MHD model proposed by Zaitsev and Stepanov

    Fluctuation theorem for counting-statistics in electron transport through quantum junctions

    Get PDF
    We demonstrate that the probability distribution of the net number of electrons passing through a quantum system in a junction obeys a steady-state fluctuation theorem (FT) which can be tested experimentally by the full counting statistics (FCS) of electrons crossing the lead-system interface. The FCS is calculated using a many-body quantum master equation (QME) combined with a Liouville space generating function (GF) formalism. For a model of two coupled quantum dots, we show that the FT becomes valid for long binning times and provide an estimate for the finite-time deviations. We also demonstrate that the Mandel (or Fano) parameter associated with the incoming or outgoing electron transfers show subpoissonian (antibunching) statistics.Comment: 20 pages, 12 figures, accepted in Phy.Rev.

    Doppler Lidar for Wind Measurements on Venus

    Get PDF
    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented

    Many-body Green's function approach to attosecond nonlinear X-ray spectroscopy

    Full text link
    Closed expressions are derived for resonant multidimensional X-ray spectroscopy using the quasiparticle nonlinear exciton representation of optical response. This formalism is applied to predict coherent four wave mixing signals which probe single and two core-hole states. Nonlinear X-ray signals are compactly expressed in terms of one- and two- particle Green's functions which can be obtained from the solution of Hedin-like equations at the GWGW level.Comment: 10 pages and 3 figures (To appear in Physical Review B

    Pulse propagation in decorated granular chains: An analytical approach

    Get PDF
    We study pulse propagation in one-dimensional chains of spherical granules decorated with small grains placed between large granules. The effect of the small granules can be captured by replacing the decorated chains by undecorated chains of large granules of appropriately renormalized mass and effective interaction between the large granules. This allows us to obtain simple analytic expressions for the pulse propagation properties using a generalization of the binary collision approximation introduced in our earlier work [Phys. Rev. E in print (2009); Phys. Rev. E {\bf 69}, 037601 (2004)]Comment: 10 pages and 12 figure
    corecore