254 research outputs found

    Nox2 and p47phox modulate compensatory growth of primary collateral arteries

    Get PDF
    The role of NADPH oxidase (Nox) in both the promotion and impairment of compensatory collateral growth remains controversial because the specific Nox and reactive oxygen species involved are unclear. The aim of this study was to identify the primary Nox and reactive oxygen species associated with early stage compensatory collateral growth in young, healthy animals. Ligation of the feed arteries that form primary collateral pathways in rat mesentery and mouse hindlimb was used to assess the role of Nox during collateral growth. Changes in mesenteric collateral artery Nox mRNA expression determined by real-time PCR at 1, 3, and 7 days relative to same-animal control arteries suggested a role for Nox subunits Nox2 and p47phox. Administration of apocynin or Nox2ds-tat suppressed collateral growth in both rat and mouse models, suggesting the Nox2/p47phox interaction was involved. Functional significance of p47phox expression was assessed by evaluation of collateral growth in rats administered p47phox small interfering RNA and in p47phox−/− mice. Diameter measurements of collateral mesenteric and gracilis arteries at 7 and 14 days, respectively, indicated no significant collateral growth compared with control rats or C57BL/6 mice. Chronic polyethylene glycol-conjugated catalase administration significantly suppressed collateral development in rats and mice, implying a requirement for H2O2. Taken together, these results suggest that Nox2, modulated at least in part by p47phox, mediates early stage compensatory collateral development via a process dependent upon peroxide generation. These results have important implications for the use of antioxidants and the development of therapies for peripheral arterial disease

    Expanding contraceptive choice

    Get PDF
    Expanding the range of contraceptive options helps individuals to make choices appropriate to their needs and circumstances, allows them to switch from one method to another if desired, and reflects a program focus on quality and rights. This policy brief outlines policy and program considerations in order to establish and maintain well-functioning supply chains for an expanded choice of contraceptives: introducing new contraceptive technologies to satisfy the diverse preferences of women and their partners; overcoming access barriers to existing methods such as adverse economic and social circumstances, including gender norms; and maximizing the potential of expanded contraceptive choice by ensuring a robust supply chain and improving provider training and counseling

    Delayed effects of acute radiation exposure (DEARE) in a murine model of the hematopoietic acute radiation syndrome: Multiple-organ injury consequent to total body irradiation

    Get PDF
    Introduction. Victims of radiation exposure from terrorist activity, radiation accidents or radiologic warfare will face a variety of acute and chronic organ injuries requiring multi-faceted approaches to treatment. The hematopoietic system is the most sensitive tissue to radiation damage, resulting in the hematopoietic acute radiation syndrome (H-ARS) after exposures of 2-10 Gy in mice. If untreated, H-ARS results in death within weeks from opportunistic infection and/or hemorrhage due to loss of neutrophils and platelets, respectively. However, survivors of ARS are plagued months to years later in life by delayed effects of acute radiation exposure (DEARE), a myriad of chronic illnesses affecting multiple organ systems believed to be due to persistent systemic oxidative stress, inflammation, fibrosis and loss of stem cell self-renewal. Fibrosis and collagen deposition disrupt both normal tissue structure and function and are common to organs with late radiation injury including the kidney and heart after radiation doses >15Gy, but have not been shown to exist after doses as low as those used in the H-ARS model (8Gy). The goal of this study was to determine the extent, if any, of heart and kidney DEARE in survivors of H-ARS. Methods. Mice (male and female C57BL/6) received total body irradiation (TBI; LD50/30 to LD70/30) and kidney and heart were harvested at 9 and 21 months from the H-ARS survivor mice. Tissues were fixed in neutral buffered formalin, paraffin embedded and sectioned, then stained with hematoxylin/eosin (H&E), trichrome, or picosirius red. Serum was collected at 4.3, 9, and 21 months post-TBI and analyzed for blood urea nitrogen (BUN) as an indicator of kidney function. Total RNA was purified from heart and relative changes in NADPH oxidase 2 (Nox2) mRNA expression were assessed by quantitative real-time PCR. Results/Significance. Compared to age-matched non-irradiated controls (NI), renal pathology at 9 months post-TBI was manifest primarily as enlargement of Bowman’s capsule and glomerosclerosis along with limited interstitial fibrosis. By 21 months there was progression of these pathologies as well as extensive interstitial fibrosis, tubular atrophy, cysts, and atubular glomeruli, all of which were more pronounced in TBI mice compared to NI. Consistent with the renal pathology, BUN in TBI mice was significantly increased at 9 and 21 months post-TBI vs. 4.3 months, but normal in NI mice at all time points. In the heart, pericardial, perivascular and interstitial fibrosis were observed at 9 months with increased severity at 21 months post-TBI compared to NI. The perivascular fibrosis was associated with increased medial layer collagen and apparent loss of vascular smooth muscle cells. Nox2 mRNA in heart was increased at 9 and 21 months post-TBI, indicating an increase in oxidant stress. To our knowledge, such striking heart and kidney damage has not been documented after radiation doses as low as those in our H-ARS model (~8Gy) and indicate that DEARE is a concern for individuals exposed to radiation doses previously thought to not elicit late effects

    Amino-borate complexation for controlling transport phenomena of penetrant molecules into polymeric matrices

    Get PDF
    The development of new high performance materials, coatings, composites and adhesives relies on insight into the origin of performance on a molecular level. This research explores a new type of epoxy-amine-borate (EAB) hybrid material for control of penetrant solvent molecules into cross-linked thermoset polymer networks. The properties of these materials are explored through material and mechanical testing and model studies are used to probe the mode-of-action through which EAB materials deliver their improved performance properties

    Assessing the hemodynamic contribution of capillaries, arterioles, and collateral arteries to vascular adaptations in arterial insufficiency

    Get PDF
    Objective There is currently a lack of clarity regarding which vascular segments contribute most significantly to flow compensation following a major arterial occlusion. This study uses hemodynamic principles and computational modeling to demonstrate the relative contributions of capillaries, arterioles, and collateral arteries at rest or exercise following an abrupt, total, and sustained femoral arterial occlusion. Methods The vascular network of the simulated rat hindlimb is based on robust measurements of blood flow and pressure in healthy rats from exercise and training studies. The sensitivity of calf blood flow to acute or chronic vascular adaptations in distinct vessel segments is assessed. Results The model demonstrates that decreasing the distal microcirculation resistance has almost no effect on flow compensation, while decreasing collateral arterial resistance is necessary to restore resting calf flow following occlusion. Full restoration of non‐occluded flow is predicted under resting conditions given all chronic adaptations, but only 75% of non‐occluded flow is restored under exercise conditions. Conclusion This computational method establishes the hemodynamic significance of acute and chronic adaptations in the microvasculature and collateral arteries under rest and exercise conditions. Regardless of the metabolic level being simulated, this study consistently shows the dominating significance of collateral vessels following an occlusion

    Delayed effects of acute radiation exposure on the cardiovascular system using a murine model of the hematopoietic acute radiation syndrome

    Get PDF
    poster abstractIntroduction. Exposure to high level radiation from accidents or belligerent activities results in acute and chronic organ damage. The hematopoietic system is the most sensitive organ to radiation damage (2-10 Gy) and results in the hematopoietic acute radiation syndrome (H-ARS). Survivors of H-ARS are plagued months to years later with delayed effects of acute radiation exposure (DEARE), characterized by chronic illnesses affecting multiple organ systems. Previous results using the murine H-ARS model showed numerous kidney and heart DEARErelated pathologies similar to humans, including tissue fibrosis and elevated blood urea nitrogen. The goal of this study was to utilize the murine H-ARS model to determine possible roles for abnormal iron metabolism, inflammation, oxidant stress, and senescence in the development of cardiac DEARE. Methods. Mice (C57BL/6; 12 week-old) received total body irradiation (TBI: ~8.5-8.7 Gy, 137Cs, LD50to LD70) and hearts were harvested at various times post-TBI from H-ARS survivors. Paraffin tissue sections were stained with hematoxylin/eosin or Perls Prussian Blue, or reacted with a macrophage-specific antibody (F4/80). Total RNA was purified from fresh tissue and changes in mRNA expression were assessed by real-time PCR for the senescence marker p16 and NADPH oxidase subunits Nox2, Nox4, or p47phox. Results/Significance. Compared to age-matched non-irradiated controls (NI), tissue iron deposits were increased in irradiated (IR) hearts at 4 months, and progressively declined with time post-TBI. Numbers of macrophages were greater in IR vs. NI sections at all time points and decreased with time post-TBI. Nox2 and Nox4 mRNA expression was increased at both 9 and 21 months post-TBI, but p47phox increased only at 21 months. Expression of p16 in IR heart was increased at 7, but not at 22 months post-TBI. Taken together, the results indicate abnormal iron metabolism, inflammation, oxidant stress, and early senescence may contribute to development of cardiac DEARE

    Amino-diol borate complexation for controlling transport phenomena of penetrant molecules into polymeric matrices

    Get PDF
    The development of new high performance materials, coatings, composites and adhesives relies on insight into the origin of material performance on a molecular level. This paper explores a new type of epoxy-amine-borate (EAB) hybrid material for control of penetrant solvent molecules into cross-linked thermoset polymer networks

    Coating method for surfaces in chemical installations

    Get PDF
    The invention pertains to a method for providing a metallic or concrete surface of a chemical installation with a coating, which comprises the steps of - providing a two-pack coating composition wherein the first pack comprises an epoxy resin and the second pack comprises an amine curing agent for the epoxy resin, the coating composition further comprising an organoboron compound of the formula BX1 X2X3, wherein X1, X2, and X3 are independently selected from -Y1 and -OY2, wherein Y1 is independently selected from monovalent C1-C12 alkyl groups and monovalent C6-C12 aryl groups, and Y2 is independently selected from monovalent C1-C12 alkyl groups and monovalent C6-C12 aryl groups, and wherein at least one of X1, X2, and X3 is an -OY2 group, - combining the first pack and the second pack to form a coating composition, - applying the coating composition to the surface of a chemical installation to form a coating layer, and - allowing the coating layer to cure at a temperature in the range of 0 to 50°C. A chemical installation provided with a lining of a cured coating composition as specified above, and a suitable coating composition, are also claimed. It has been found that the coating composition as specified herein has a wide application spectrum, and a high chemical resistance

    Novel Method to Assess Arterial Insufficiency in Rodent Hindlimb

    Get PDF
    BACKGROUND: Lack of techniques to assess maximal blood flow capacity thwarts the use of rodent models of arterial insufficiency to evaluate therapies for intermittent claudication. We evaluated femoral vein outflow (VO) in combination with stimulated muscle contraction as a potential method to assess functional hind limb arterial reserve and therapeutic efficacy in a rodent model of subcritical limb ischemia. MATERIALS AND METHODS: VO was measured with perivascular flow probes at rest and during stimulated calf muscle contraction in young, healthy rats (Wistar Kyoto, WKY; lean Zucker rats, LZR) and rats with cardiovascular risk factors (spontaneously hypertensive [SHR]; obese Zucker rats [OZR]) with acute and/or chronic femoral arterial occlusion. Therapeutic efficacy was assessed by administration of Ramipril or Losartan to SHR after femoral artery excision. RESULTS: VO measurement in WKY demonstrated the utility of this method to assess hind limb perfusion at rest and during calf muscle contraction. Although application to diseased models (OZR and SHR) demonstrated normal resting perfusion compared with contralateral limbs, a significant reduction in reserve capacity was uncovered with muscle stimulation. Administration of Ramipril and Losartan demonstrated significant improvement in functional arterial reserve. CONCLUSIONS: The results demonstrate that this novel method to assess distal limb perfusion in small rodents with subcritical limb ischemia is sufficient to unmask perfusion deficits not apparent at rest, detect impaired compensation in diseased animal models with risk factors, and assess therapeutic efficacy. The approach provides a significant advance in methods to investigate potential mechanisms and novel therapies for subcritical limb ischemia in preclinical rodent models
    • 

    corecore