177 research outputs found
CEP-stable Tunable THz-Emission Originating from Laser-Waveform-Controlled Sub-Cycle Plasma-Electron Bursts
We study THz-emission from a plasma driven by an incommensurate-frequency
two-colour laser field. A semi-classical transient electron current model is
derived from a fully quantum-mechanical description of the emission process in
terms of sub-cycle field-ionization followed by continuum-continuum electron
transitions. For the experiment, a CEP-locked laser and a near-degenerate
optical parametric amplifier are used to produce two-colour pulses that consist
of the fundamental and its near-half frequency. By choosing two incommensurate
frequencies, the frequency of the CEP-stable THz-emission can be continuously
tuned into the mid-IR range. This measured frequency dependence of the
THz-emission is found to be consistent with the semi-classical transient
electron current model, similar to the Brunel mechanism of harmonic generation
Symmetry-breaking and chaos in electron transport in semiconductor superlattices
We study the motion of electrons in a single miniband of a semiconductor
superlattice driven by THz electric field polarized along the growth direction.
We work in the semiclassical balance-equation model, including different
elastic and inelastic scattering rates, and incorporating the self-consistent
electric field generated by electron motion. We explore regions of complex
dynamics, which can include chaotic behaviour and symmetry-breaking. We
estimate the magnitudes of dc current and dc voltage that spontaneously appear
in regions of broken-symmetry for parameters characteristic of modern
semiconductor superlattices. This work complements PRL 80(1998)2669 [
cond-mat/9709026 ].Comment: 4 pages, 3 figures, RevTEX, EPS
Bound-to-bound and bound-to-continuum optical transitions in combined quantum dot - superlattice systems
By combining band gap engineering with the self-organized growth of quantum
dots, we present a scheme of adjusting the mid-infrared absorption properties
to desired energy transitions in quantum dot based photodetectors. Embedding
the self organized InAs quantum dots into an AlAs/GaAs superlattice enables us
to tune the optical transition energy by changing the superlattice period as
well as by changing the growth conditions of the dots. Using a one band
envelope function framework we are able, in a fully three dimensional
calculation, to predict the photocurrent spectra of these devices as well as
their polarization properties. The calculations further predict a strong impact
of the dots on the superlattices minibands. The impact of vertical dot
alignment or misalignment on the absorption properties of this dot/superlattice
structure is investigated. The observed photocurrent spectra of vertically
coupled quantum dot stacks show very good agreement with the calculations.In
these experiments, vertically coupled quantum dot stacks show the best
performance in the desired photodetector application.Comment: 8 pages, 10 figures, submitted to PR
Intraband transitions in quantum dot-superlattice heterostructures
8 pages, 10 figuresWe present a scheme of adjusting the mid-infrared absorption properties to desired energy transitions in quantum dot-based photodetectors by combining band gap engineering with the self-organized growth of quantum dots. Embedding the self-organized InAs quantum dots into an AlAs/GaAs superlattice enables us to tune the optical transition energy by changing the superlattice period as well as by changing the growth conditions of the dots. Using a one-band envelope function framework, we are able, in a three-dimensional calculation, to predict the absorption spectra of these devices as well as their polarization properties. These calculations further predict a strong impact of the dots on the superlattice minibands. By comparing aligned, periodic dot stacks with nonperiodic dot arrangements within the superlattice, we can experimentally confirm this prediction
Electrically Switchable Photonic Molecule Laser
We have studied the coherent intercavity coupling of the evanescent fields of
the whispering gallery modes of two terahertz quantum-cascade lasers
implemented as microdisk cavities. The electrically pumped single-mode
operating microcavities allow to electrically control the coherent mode
coupling for proximity distances of the cavities up to 30-40 \mu\m. The optical
emission of the strongest coupled photonic molecule can be perfectly switched
by the electrical modulation of only one of the coupled microdisks. The
threshold characteristics of the strongest coupled photonic molecule
demonstrates the linear dependence of the gain of a quantum-cascade laser on
the applied electric field.Comment: 4 pages, 4 figure
Intersubband gain in a Bloch oscillator and Quantum cascade laser
The link between the inversion gain of quantum cascade structures and the
Bloch gain in periodic superlattices is presented. The proposed theoretical
model based on the density matrix formalism is able to treat the gain mechanism
of the Bloch oscillator and Quantum cascade laser on the same footing by taking
into account in-plane momentum relaxation. The model predicts a dispersive
contribution in addition to the (usual) population-inversion-dependent
intersubband gain in quantum cascade structures and - in the absence of
inversion - provides the quantum mechanical description for the dispersive gain
in superlattices. It corroborates the predictions of the semi-classical
miniband picture, according to which gain is predicted for photon energies
lower than the Bloch oscillation frequency, whereas net absorption is expected
at higher photon energies, as a description which is valid in the
high-temperature limit. A red-shift of the amplified emission with respect to
the resonant transition energy results from the dispersive gain contribution in
any intersubband transition, for which the population inversion is small.Comment: 10 pages, 6 figure
Spontaneous DC Current Generation in a Resistively Shunted Semiconductor Superlattice Driven by a TeraHertz Field
We study a resistively shunted semiconductor superlattice subject to a
high-frequency electric field. Using a balance equation approach that
incorporates the influence of the electric circuit, we determine numerically a
range of amplitude and frequency of the ac field for which a dc bias and
current are generated spontaneously and show that this region is likely
accessible to current experiments. Our simulations reveal that the Bloch
frequency corresponding to the spontaneous dc bias is approximately an integer
multiple of the ac field frequency.Comment: 8 pages, Revtex, 3 Postscript figure
Free carrier absorption in quantum cascade structures
We show that the free carrier absorption in Quantum Cascade Lasers is very
small and radically different from the classical Drude result on account of the
orthogonality between the direction of the carrier free motion and the electric
field of the laser emission. A quantum mechanical calculation of the free
carrier absorption and inter-subband oblique absorption induced by interface
defects, coulombic impurities and optical phonon absorption/emission is
presented for QCL's with a double quantum well design. The interaction between
the electrons and the optical phonons dominates at room temperature
- …