16 research outputs found

    Glaube und ReligiositÀt in österreichischen Justizanstalten

    Get PDF
    Die Arbeit beschĂ€ftigt sich mit der Thematik „Glaube und ReligiositĂ€t in österreichischen Justizanstalten“. Als Forschungsfeld dient die Justizanstalt Wien-Josefstadt, die die grĂ¶ĂŸte Justizanstalt in Österreich ist. Anfangs wird eine allgemeine EinfĂŒhrung in das GefĂ€ngnissystem in Österreich gegeben. Weiters wird auf die gesetzliche Grundlage von Religionsfreiheit und die Möglichkeiten von Gefangenenseelsorge in Österreich eingegangen. Ausgehend von den statistischen Daten aus dem Bundesministerium fĂŒr Justiz ĂŒber die religiösen Bekenntnisse der Insassen werden die derzeitige Situation der Insassen und deren Möglichkeiten ihre Religion auszuĂŒben beleuchtet. Es wird ein kritischer Blick auf die Art der Datenerhebung der religiösen Bekenntnisse geworfen. DarĂŒber hinaus gibt es eine genaue Darstellung jener Einrichtungen in der Justizanstalt, deren Aufgabe die religiöse Begleitung der Insassen ist. So werden die verschiedenen GebetsrĂ€ume, die KĂŒche mit ihren Aufgaben rituelle Kost fĂŒr Insassen zu zubereiten und die Bibliothek mit ihrer religiösen Literatur in der Justizanstalt beschrieben. Der Hauptteil der Arbeit basiert auf Interviews mit Seelsorgern und Insassen. Mit Hilfe der Interviews wird die buddhistische, evangelische, jĂŒdische, katholische, moslemische und die Gefangenenseelsorge der Zeugen Jehovas dargestellt. So werden die unterschiedlichen ZugĂ€nge der Kirchen und Religionsgemeinschaften zur Gefangenenseelsorge Österreich weit beschrieben, um in Folge auf die Situation in der Justizanstalt Josefstadt genauer einzugehen. Dargestellt werden die Aufgabenbereiche der einzelnen Seelsorger und deren WĂŒnsche nach Verbesserungen. Um ein authentisches Bild ĂŒber die Möglichkeit von GlaubensausĂŒbungen seitens der Insassen zu bekommen wurden insgesamt 19 Insassen befragt. Die interviewten Insassen bekennen sich zu acht verschiedenen Kirchen oder Religionsgemeinschaften. Die Auswertung dieser Interviews findet unter folgenden Gesichtspunkten statt: Beschreibt sich der Insasse als glĂ€ubiger Mensch? Hat sich sein Glauben in der Gefangenschaft verĂ€ndert –wenn ja, warum? Wie begegnen die Insassen ganz persönlich der Seelsorge; welche UnterstĂŒtzung erfahren, welche Probleme sehen sie? Was hĂ€tten die Insassen gerne verbessert

    The N-Terminal, Polybasic Region Is Critical for Prion Protein Neuroprotective Activity

    Get PDF
    Several lines of evidence suggest that the normal form of the prion protein, PrPC, exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrPC to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (Δ32–134, called F35). To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (Δ23–31, Δ23–111, and Δ23–134) to rescue the phenotype of Tg(F35) mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although Δ23–31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrPC neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases

    Antibodies against complement-regulatory proteins on platelets in immune thrombocytopenia

    No full text
    In immune thrombocytopenia (ITP), antibodies reacting with platelet membrane glycoproteins (GP) mediate premature platelet cleavage, resulting in thrombocytopenia and therefore a risk of bleeding. These antibodies may induce complement activation, thus mediating complement-induced platelet destruction. In this study, we investigated the possibility of an additional complement-related pathogenic mechanism, where antibodies against the complement-regulatory factors CD55 and CD59 may directly interfere with normal complement function. CD55 downregulates both the classic and the alternative activation pathways, while CD59 blocks the formation of the membrane attack complex; both proteins are present on platelets and may therefore be targets of autoantibodies. Using the simultaneous analysis of specific platelet antibodies (SASPA) assay, we found that in some cases of immune-mediated thrombocytopenia, anti-CD55 and -CD59 antibodies are detectable in patients’ sera and/or on their autologous platelets in combination with antibodies against platelet-specific GP. Although antibodies against CD55 and CD59 seem to be a rare phenomenon, this finding may have clinical relevance due to the availability of highly effective therapeutics targeting the complement system

    F35 mice co-expressing N-terminal deletion mutants are normal at 3 weeks.

    No full text
    <p>Animals of the indicated genotypes were sacrificed at 3 weeks and brain sections were stained with hematoxylin and eosin. Images show the whole cerebellum (A–F), the granule cell layer of the second cerebellar lobe (G–L), and the cerebellar white matter (M–R). Scale bars = 1 mm (A–F) and 100 ”m (G–R).</p

    N-terminally deleted forms of PrP are impaired in their ability to suppress the neurodegenerative phenotype of Tg(F35) mice.

    No full text
    <p>The genotype, number of mice, age at death, and relative expression levels PrP are shown for each transgenic line. While 0.5× expression of WT PrP greatly prolongs the lifespan of Tg(F35) mice, the N-terminal mutants have only a modest effect on lifespan, even at elevated expression levels. Asterisks indicate statistically significant differences in age at death compared to Tg(F35)/<i>Prn-p</i><sup>−/−</sup> mice (<b>**</b> p<0.001, <b>*</b> p<0.01 by Kruskal-Wallis with Dunn's secondary test).</p

    F35 does not interact with either WT PrP or Δ23–31 PrP in co-immunoprecipitation experiments.

    No full text
    <p>Brain lysates from mice expressing F35 PrP in the presence or absence of either WT or Δ23–31 PrP were immunoprecipitated with Dynabeads coupled to anti-PrP antibody 6D11, or with naked beads as a control. Immunopreciptated proteins were then analyzed by Western blotting with anti-PrP antibody 6H4. The arrowhead indicates the position of F35 PrP. The faint band appearing in lane 6 between 15 and 20 kDa is distinguishable from the F35 protein, and could represent a C-terminal fragment of Δ23–31 PrP.</p

    Survival of mice co-expressing N-terminal deletion mutants.

    No full text
    <p>Each point represents the percentage of animals alive at the indicated age. Statistical analyses are shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0025675#pone-0025675-t001" target="_blank">Table 1</a>.</p

    Expression of transgenes.

    No full text
    <p>(<b>A</b>) Brain lysates from a non-transgenic WT mouse (expressing 1× PrP), and from Tg mice expressing F35 PrP (2×), Δ23–31 PrP (1× and 6×), Δ23–111 PrP (7×), and Δ23–134 PrP (1×) were Western blotted and probed with anti-PrP antibody 6H4. (<b>B</b>) Lysates from the brains of 10 week old mice were treated with PNGase F to removed N-linked oligosaccharides. Digestion products were subjected to Western blotting using antibody 6H4 to detect PrP. Single and double asterisks mark the positions of the endogenous C1 and C2 cleavage fragments, respectively.</p

    Δ23–31, Δ23–111, Δ23–134, and Δ32–134 (F35) PrP are GPI-anchored and have a cellular localization pattern similar to WT PrP.

    No full text
    <p>(<b>A–L</b>) The indicated constructs were transiently expressed in BHK cells along with dsRedER. Cells were incubated in the absence (A–F) or presence (G–L) of PIPLC, then surface stained for PrP (A–C, G–I: 6D11 or D–F, J–L: 6H4) on ice prior to incubating with secondary antibody (dsRedER signal in red, PrP in green). DAPI staining is shown in blue for panels D–F, J–L. Like WT PrP (H), the mutant PrP molecules are released from the plasma membrane by PIPLC treatment (I–L). (<b>M–R</b>) BHK cells transfected with the indicated constructs were permeabilized and stained with anti-PrP antibody [M–O: 6D11, P–R: 6H4 (green)], anti-giantin antibody (red), and DAPI (blue). Like WT PrP, each mutant is present both at the cell surface and intracellularly, where it colocalizes with the Golgi marker, giantin. [Scale bar in A (applicable to panels A–L, P–R) = 25 ”m. Scale bar in M–O = 15 ”m.].</p
    corecore