44 research outputs found

    Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome.

    Get PDF
    The short rib polydactyly syndromes (SRPSs) are a heterogeneous group of autosomal recessive, perinatal lethal skeletal disorders characterized primarily by short, horizontal ribs, short limbs and polydactyly. Mutations in several genes affecting intraflagellar transport (IFT) cause SRPS but they do not account for all cases. Here we identify an additional SRPS gene and further unravel the functional basis for IFT. We perform whole-exome sequencing and identify mutations in a new disease-producing gene, cytoplasmic dynein-2 light intermediate chain 1, DYNC2LI1, segregating with disease in three families. Using primary fibroblasts, we show that DYNC2LI1 is essential for dynein-2 complex stability and that mutations in DYNC2LI1 result in variable length, including hyperelongated, cilia, Hedgehog pathway impairment and ciliary IFT accumulations. The findings in this study expand our understanding of SRPS locus heterogeneity and demonstrate the importance of DYNC2LI1 in dynein-2 complex stability, cilium function, Hedgehog regulation and skeletogenesis

    Genetic Candidate Variants in Two Multigenerational Families with Childhood Apraxia of Speech

    Get PDF
    Childhood apraxia of speech (CAS) is a severe and socially debilitating form of speech sound disorder with suspected genetic involvement, but the genetic etiology is not yet well understood. Very few known or putative causal genes have been identified to date, e.g., FOXP2 and BCL11A. Building a knowledge base of the genetic etiology of CAS will make it possible to identify infants at genetic risk and motivate the development of effective very early intervention programs. We investigated the genetic etiology of CAS in two large multigenerational families with familial CAS. Complementary genomic methods included Markov chain Monte Carlo linkage analysis, copy-number analysis, identity-by-descent sharing, and exome sequencing with variant filtering. No overlaps in regions with positive evidence of linkage between the two families were found. In one family, linkage analysis detected two chromosomal regions of interest, 5p15.1-p14.1, and 17p13.1-q11.1, inherited separately from the two founders. Single-point linkage analysis of selected variants identified CDH18 as a primary gene of interest and additionally, MYO10, NIPBL, GLP2R, NCOR1, FLCN, SMCR8, NEK8, and ANKRD12, possibly with additive effects. Linkage analysis in the second family detected five regions with LOD scores approaching the highest values possible in the family. A gene of interest was C4orf21(ZGRF1) on 4q25-q28.2. Evidence for previously described causal copy-number variations and validated or suspected genes was not found. Results are consistent with a heterogeneous CAS etiology, as is expected in many neurogenic disorders. Future studies will investigate genome variants in these and other families with CAS

    Exome sequencing of childā€“parent trios with bladder exstrophy: Findings in 26 children

    Get PDF
    Bladder exstrophy (BE) is a rare, lower ventral midline defect with the bladder and part of the urethra exposed. The etiology of BE is unknown but thought to be influenced by genetic variation with more recent studies suggesting a role for rare variants. As such, we conducted paired-end exome sequencing in 26 child/mother/father trios. Three children had rare (allele frequency ā‰¤ 0.0001 in several public databases) inherited variants in TSPAN4, one with a loss-of-function variant and two with missense variants. Two children had loss-of-function variants in TUBE1. Four children had rare missense or nonsense variants (one per child) in WNT3, CRKL, MYH9, or LZTR1, genes previously associated with BE. We detected 17 de novo missense variants in 13 children and three de novo loss-of-function variants (AKR1C2, PRRX1, PPM1D) in three children (one per child). We also detected rare compound heterozygous loss-of-function variants in PLCH2 and CLEC4M and rare inherited missense or loss-of-function variants in additional genes applying autosomal recessive (three genes) and X-linked recessive inheritance models (13 genes). Variants in two genes identified may implicate disruption in cell migration (TUBE1) and adhesion (TSPAN4) processes, mechanisms proposed for BE, and provide additional evidence for rare variants in the development of this defect

    Exome sequencing identifies genetic variants in anophthalmia and microphthalmia

    Get PDF
    Anophthalmia and microphthalmia (A/M) are rare birth defects affecting up to 2 per 10,000 live births. These conditions are manifested by the absence of an eye or reduced eye volumes within the orbit leading to vision loss. Although clinical case series suggest a strong genetic component in A/M, few systematic investigations have been conducted on potential genetic contributions owing to low population prevalence. To overcome this challenge, we utilized DNA samples and data collected as part of the National Birth Defects Prevention Study (NBDPS). The NBDPS employed multi-center ascertainment of infants affected by A/M. We performed exome sequencing on 67 family trios and identified numerous genes affected by rare deleterious nonsense and missense variants in this cohort, including de novo variants. We identified 9 nonsense changes and 86 missense variants that are absent from the reference human population (Genome Aggregation Database), and we suggest that these are high priority candidate genes for A/M. We also performed literature curation, single cell transcriptome comparisons, and molecular pathway analysis on the candidate genes and performed protein structure modeling to determine the potential pathogenic variant consequences on PAX6 in this disease

    Exome sequencing of family trios from the National Birth Defects Prevention Study: Tapping into a rich resource of genetic and environmental data

    Get PDF
    Background: The National Birth Defects Prevention Study (NBDPS) is a multisite, population-based, caseā€“control study of genetic and nongenetic risk factors for major structural birth defects. Eligible women had a pregnancy affected by a birth defect or a liveborn child without a birth defect between 1997 and 2011. They were invited to complete a telephone interview to collect pregnancy exposure data and were mailed buccal cell collection kits to collect specimens from themselves, their child (if living), and their child's father. Over 23,000 families representing more than 30 major structural birth defects provided DNA specimens. Methods: To evaluate their utility for exome sequencing (ES), specimens from 20 children with colonic atresia were studied. Evaluations were conducted on specimens collected using cytobrushes stored and transported in open versus closed packaging, on native genomic DNA (gDNA) versus whole genome amplified (WGA) products and on a library preparation protocol adapted to low amounts of DNA. Results: The DNA extracted from brushes in open packaging yielded higher quality sequence data than DNA from brushes in closed packaging. Quality metrics of sequenced gDNA were consistently higher than metrics from corresponding WGA products and were consistently high when using a low input protocol. Conclusions: This proof-of-principle study established conditions under which ES can be applied to NBDPS specimens. Successful sequencing of exomes from well-characterized NBDPS families indicated that this unique collection can be used to investigate the roles of genetic variation and geneā€“environment interaction effects in birth defect etiologies, providing a valuable resource for birth defect researchers

    Exome-wide assessment of isolated biliary atresia: A report from the National Birth Defects Prevention Study using childā€“parent trios and a caseā€“control design to identify novel rare variants

    Get PDF
    The etiology of biliary atresia (BA) is unknown, but recent studies suggest a role for rare protein-altering variants (PAVs). Exome sequencing data from the National Birth Defects Prevention Study on 54 childā€“parent trios, one childā€“mother duo, and 1513 parents of children with other birth defects were analyzed. Most (91%) cases were isolated BA. We performed (1) a trio-based analysis to identify rare de novo, homozygous, and compound heterozygous PAVs and (2) a caseā€“control analysis using a sequence kernel-based association test to identify genes enriched with rare PAVs. While we replicated previous findings on PKD1L1, our results do not suggest that recurrent de novo PAVs play important roles in BA susceptibility. In fact, our finding in NOTCH2, a disease gene associated with Alagille syndrome, highlights the difficulty in BA diagnosis. Notably, IFRD2 has been implicated in other gastrointestinal conditions and warrants additional study. Overall, our findings strengthen the hypothesis that the etiology of BA is complex

    Dominant variants in PRR12 result in unilateral or bilateral complex microphthalmia

    No full text
    Complex microphthalmia is characterized by small eyes with additional abnormalities that may include anterior segment dysgenesis. While many genes are known, a genetic cause is identified in only 4-30% of microphthalmia, with the lowest rate in unilateral cases. We identified four novel pathogenic loss-of-function alleles in PRR12 in families affected by complex microphthalmia and/or Peters anomaly, including two de novo, the first dominantly transmitted allele, as well as the first splicing variant. The ocular phenotypes were isolated with no additional systemic features observed in two unrelated families. Remarkably, ocular phenotypes were asymmetric in all individuals and unilateral (with structurally normal contralateral eye) in three. There are only three previously reported PRR12 variants identified in probands with intellectual disability, neuropsychiatric disorders, and iris anomalies. While some overlap with previously reported cases is seen, nonsyndromic developmental ocular anomalies are a novel phenotype for this gene. Additional phenotypic expansions included short stature and normal development/cognition, each noted in two individuals in this cohort, as well as absence of neuropsychiatric disorders in all. This study identifies new associations for PRR12 disruption in humans and presents a genetic diagnosis resulting in unilateral ocular phenotypes in a significant proportion of cases
    corecore