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Abstract

The etiology of biliary atresia (BA) is unknown, but recent studies suggest a role for

rare protein-altering variants (PAVs). Exome sequencing data from the National

Birth Defects Prevention Study on 54 child–parent trios, one child–mother duo,

and 1513 parents of children with other birth defects were analyzed. Most (91%)

cases were isolated BA. We performed (1) a trio-based analysis to identify rare de

novo, homozygous, and compound heterozygous PAVs and (2) a case–control analy-

sis using a sequence kernel-based association test to identify genes enriched with

rare PAVs. While we replicated previous findings on PKD1L1, our results do not

suggest that recurrent de novo PAVs play important roles in BA susceptibility. In

fact, our finding in NOTCH2, a disease gene associated with Alagille syndrome, high-

lights the difficulty in BA diagnosis. Notably, IFRD2 has been implicated in other

gastrointestinal conditions and warrants additional study. Overall, our findings

strengthen the hypothesis that the etiology of BA is complex.
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1 | INTRODUCTION

Biliary atresia (BA), a major birth defect with an estimated prevalence

of 5–10 per 100,000 births, results in severe liver disease and is the

leading indication for pediatric liver transplantation worldwide (Asai

et al., 2015; Lakshminarayanan & Davenport, 2016; Sanchez-Valle

et al., 2017). Characterized by obstruction of the biliary duct system,

children with BA cannot excrete bile from the liver into the intestines

to emulsify and help digest fats. Instead, bile is retained in the liver,

leading to liver injury, progressive liver fibrosis, and, if untreated, end-

stage liver disease by the end of the first year of life (Asai et al., 2015).

Approximately 10% of BA cases present as syndromic, for example,

with various laterality defects (heterotaxy), including splenic abnor-

malities and complex cardiac malformations, commonly referred to as

the BA splenic malformation syndrome, whereas the remainder of

cases present as isolated BA (Berauer et al., 2019; Bezerra

et al., 2018; Schwarz et al., 2013).

The genetic architecture of BA, especially isolated BA, remains

largely unknown but appears to be complex. Three recent genome-

wide association studies revealed that common intronic variants in

ADD3, GPC1, ARF6, and EFEMP1 are associated with isolated BA

(Chen et al., 2018; Garcia-Barcel�o et al., 2010; Ningappa et al., 2015).

However, some studies have also pointed toward rare variants

influencing BA susceptibility. For example, in a study of 67 patients

with BA and co-occurring laterality defects, five patients had a rare

and potentially deleterious biallelic variant in polycystin-1-like-1 tran-

sient receptor potential channel interacting (PKD1L1), a gene associ-

ated with ciliary calcium signaling and embryonic laterality

determination (Berauer et al., 2019). A recent analysis of exome

sequencing (ES) data from 101 children (including 30 child–parent

trios) with isolated BA identified 66 rare de novo variants in 66 genes,

including potentially deleterious variants in STIP1 and REV1

(Rajagopalan et al., 2020). Furthermore, another study evaluating ES

data among nonsyndromic patients from Southeast Asia pointed to

the role of rare variants in ciliary genes as underlying BA susceptibility

(Lam et al., 2021).

To further elucidate the genetic etiology of BA in children, we

sought to identify novel variants associated with isolated BA using ES

data from cases, parents, and unrelated controls. We first conducted a

family-based analysis using child–parent trios to identify rare de novo,

rare homozygous, and rare compound heterozygous protein-altering

variants (PAVs). Next, we performed case–control analyses to identify

both common and rare PAVs associated with BA.

2 | MATERIALS AND METHODS

2.1 | Study population

The National Birth Defects Prevention Study (NBDPS) was a

population-based study of over 30 major structural birth defects,

which sought to identify environmental and genetic factors associated

with these conditions. Details of the study methods and population

have been outlined previously (Reefhuis et al., 2015; Yoon

et al., 2001). Briefly, sites in 10 U.S. states were included as part of

the NBDPS, including Arkansas, California, Georgia, Iowa, Massachu-

setts, New Jersey, New York, North Carolina, Texas, and Utah. Birth

defect surveillance programs from these states ascertained children

with eligible defects among pregnancies with estimated dates of deliv-

ery between October 1997 and December 2011.

All liveborn children diagnosed with BA were considered for

inclusion. First, a board-certified clinical geneticist at each NBDPS site
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reviewed clinical information abstracted from medical records to ver-

ify eligibility (Rasmussen et al., 2003). Consistency across centers was

established by a clinical geneticist who performed the final classifica-

tion of each child diagnosed with BA. Children with known syn-

dromes, chromosomal, or single-gene disorder etiologies were

excluded. Next, children with BA were classified as isolated (no addi-

tional major birth defects or additional related birth defects only) or

multiple (one or more additional major birth defects in an unrelated

organ system).

Enrolled mothers completed a computer-assisted telephone inter-

view 6 weeks–2 years after their estimated date of delivery. Follow-

ing the interview, they were asked to collect buccal cell specimens

from themselves, their child (if living), and the child's father

(if available) (Reefhuis et al., 2015). Mothers who participated in the

NBDPS with a previous child, those who could not complete the inter-

view in English or Spanish, or those who were incarcerated or other-

wise did not have custody of their child at the time of recruitment

were excluded.

There were 315 women with eligible pregnancies affected by BA,

of whom 216 completed the telephone interview (Reefhuis

et al., 2015). Of these, 115 mothers, 105 children, and 95 fathers pro-

vided buccal cell specimens. Similarly, 1513 parents from other birth

defect groups from the NBDPS with buccal cell specimens for ES

were selected as controls (Jenkins et al., 2019). As described previ-

ously (Jenkins et al., 2019), two different types of cytobrushes were

used to collect specimens during phases of the study: “wet brushes”
(1997–2003) (cytobrushes packaged in closed plastic tubes preventing

air drying [Cyto-Pak Cytosoft Brushes CP-5B, Medical Packaging Cor-

poration, Camarillo, CA]) and “dry brushes” (2003–2011) (cytobrushes
packaged in open paper-backed peel pouches [Cytology Brush Pack

CYB-1, Medical Packaging Corporation]). Informed consent was

obtained for all participants providing buccal cell specimens, and the

study protocol for the NBDPS was approved by the institutional

review board at each NBDPS site.

2.2 | Specimen processing, sequencing, and
alignment

Specimen processing, sequencing, and alignment were performed in

collaboration with the National Institutes of Health Intramural

Sequencing Center (NISC) at the National Human Genome Research

Institute (NHGRI) and the University of Washington Center for Men-

delian Genomics. Detailed procedures have been previously described

(Jenkins et al., 2019). Specifically, due to DNA quality and quantity

considerations, 64 child–parent trio specimens from only dry brushes

were subjected to ES. Buccal specimens with adequate DNA amounts

(≥200 ng assessed by quantitative real-time polymerase chain reaction

[PCR] targeting the RNaseP gene) were sent to the NISC at the

NHGRI for processing and sequencing. The ES capture kit used at

NISC was a standard commercially available kit, the NimbleGen Seq-

Cap EZ Exome+UTR Library (Version 3.0) and covered 96 Mb (Roche

NimbleGen, 2013). The DNA was sheared mechanically, and targeted

fragments were captured by probe hybridization and amplified before

sequencing (Jenkins et al., 2019). NISC generated read lengths of

126 bases on an Illumina HiSeq 2500 instrument. Paired-end reads

generated approximately 250 base pairs (bp) of sequence from each

fragment in the library. A total of 38 million paired-end 126 bp reads

were targeted and as many as 48 libraries were pooled and sequenced

across as many lanes as needed to achieve the targeted number of

reads (938 million read pairs or 76 million reads pre-library); thus, 5–6

libraries were run per lane. Image analysis and base calling were per-

formed using the Illumina Genome Analyzer Pipeline software (version

1.18.64.0) with default parameters. In preparation for ES, ten trios

and one father failed during sequencing library preparation due to bad

reagents from contaminated library kits, and there was insufficient

DNA quantity available for a second library rebuild. The final sample

of BA cases sequenced comprised 54 child–parent trios and one

child–mother duo. Cases were predominantly isolated BA (n = 50),

whereas five had additional major birth defects.

After ES at NISC, Binary Alignment Map files were sent to the

University of Washington Center for Mendelian Genomics for repro-

cessing. Reads were aligned to human reference (hg19hs37d5) using

BWA-MEM (Burrows-Wheeler Aligner v0.7.10) (Li et al., 2009). Read

data from a flow-cell lane were treated independently for alignment

and quality control (QC) purposes in instances where merging of data

from multiple lanes was required (e.g., for DNA sample multiplexing).

Read-pairs not mapped within ±2 standard deviations (SD) of the

average library size (�150 ± 15 bp for exomes) were removed. All

aligned read data were subject to the following steps: (a) “duplicate
removal” (Picard MarkDuplicates v1.111); (b) indel realignment (the

Genome-Analysis-Toolkit (GATK) IndelRealigner v3.2–2); and (c) base

quality recalibration (GATK BaseRecalibrator v3.2–2). Variant detec-

tion and genotyping were performed using the HaplotypeCaller tool

from GATK v3.2. Following GATK best practices, variant quality score

recalibration was performed. Variants flagged as low quality or poten-

tial false positives (quality score ≤ 50, long homopolymer run >4, qual-

ity by depth <5, or within a cluster of single nucleotide

polymorphisms) were excluded.

2.3 | Variant and sample quality control

Following specimen sequencing and alignment, we performed all sub-

sequent ES data QC. In particular, all variants underwent additional

genotype, variant, and sample QC prior to case–control analyses. We

first removed variants with mean genotype depth < 10 reads. Variants

were removed if they were multi-allelic, failed the Hardy–Weinberg

equilibrium (HWE) check at p < 10�6 or had a call rate <0.99. GATK

best practices (McKenna et al., 2010) for variant prioritization were

applied, whereby variants with heterozygosity values >54.69 were

removed. Next, the variant quality score recalibration pipeline in

GATK v4.1.2 was implemented, utilizing seven informative annotation

profiles (Quality by Depth, Mapping Quality, MQRankSum, ReadPos-

RankSum, Fisher strand, Strand odds ratio, and InbreedingCoeff) to

quantify the quality of all variants. Single nucleotide variants (SNVs)



and insertions/deletions (INDELs) were evaluated independently using

unique annotation profiles as recommended by GATK. Top-quality

SNVs and INDELs were selected at the 99.7 and 99.0 percentile,

respectively. Lastly, only uniquely mapped variants with a 100-mers

mappability score of one were evaluated (Karimzadeh et al., 2018).

Sample QC involved filtering on mean sample's genotype depth,

number of variants, number of singletons, inbreeding coefficient,

heterozygous-to-homozygous ratio, transition-to-transversion ratio,

and missingness. Specifically, individuals were excluded if any of the

evaluated metrics fell beyond ±6 SD from the sample mean. Sample

kinship for genetic relatedness and genetic ancestry estimation were

evaluated with KING v2.2 (Manichaikul et al., 2010) and PRIMUS v1.9

(Staples et al., 2013), respectively. Individuals identified to be dupli-

cates, related at second degree or closer with cases, or parents of chil-

dren with BA were excluded from the final sample for the case–

control association analysis.

2.4 | Child–parent trio analysis

ES data was available for 54 child–parent trios. In each trio, variants

were identified using Platypus v0.8.1 (Rimmer et al., 2014), and var-

iant annotation was conducted using ANNOVAR (Wang

et al., 2010) for information on variant type, alternate allele fre-

quency (AAF) in the gnomAD v2.1.1 population database

(Karczewski et al., 2020), and multiple in silico predictions of variant

deleteriousness that included rare exome variant ensemble learner

(REVEL) (Ioannidis et al., 2016) and phred-scaled combined annota-

tion dependent depletion (CADD) (Kircher et al., 2014) scores. To

identify potential pathogenic variants, we prioritized rare de novo

(novel or gnomAD AAF <0.0001), homozygous (novel or gnomAD

AAF <0.001), and compound heterozygous (novel or gnomAD AAF

<0.001) variants.

2.5 | Case–control analysis

Differences in case and control groups by demographic characteristics

were compared using the Pearson χ2 test. Common and rare variants

were evaluated separately. Specifically, we utilized the single variant

score test in Rvtests (Zhan et al., 2016) to identify common variants

(minor allele frequency [MAF] ≥0.05) associated with BA. The associa-

tion of rare variants (MAF <0.05) was evaluated using a gene-based

approach. To prioritize for PAVs, we evaluated rare missense and rare

synonymous variants independently since we expected synonymous

variants to be unassociated. Furthermore, in the gene-based associa-

tion analyses, we only evaluated genes with (1) at least two variants in

the overall study sample and (2) at least one variant present in chil-

dren with BA. Principal components (PCs) were calculated using

PLINK v1.9 (Purcell et al., 2007) to capture unmeasured ancestry

structure in the study population. We conducted the sequence

kernel-based association test (SKAT) for a combined effect of rare var-

iants using the SKAT v2.0.1 package in R v4.1.1 (Ionita-Laza

et al., 2013; Lee et al., 2012). Briefly, SKAT is a region-based test for

the joint effects of the individual variant score test statistic. Within a

prespecified genomic region of multiple rare variants, SKAT performs

a multiple regression approach directly regressing a phenotype on

genetic variants and covariates, and SKAT p-values for the association

are computed analytically (Lee et al., 2012; Wu et al., 2011). All ana-

lyses were applied using the efficient resampling method for the inclu-

sion of extremely rare variants (Lee et al., 2016). Assuming an additive

genetic model, all statistical models for common and rare variants

were adjusted for sex and the first five PCs to account for population

stratification. Quantile–quantile plots and genomic inflation factors

were evaluated for signs of genomic inflation. Raw association p-

values were corrected for multiple testing using the Bonferroni cor-

rection approach, and statistically significant findings were defined at

the corrected p < 0.05.

2.6 | Pathogenic variant validation

Potential pathogenic variants identified in the child–parent trio analy-

sis and their inheritance patterns were further validated by an orthog-

onal DNA-sequencing method. Target amplicons were amplified from

genomic DNA using conventional PCR (HotStarTaqDNA polymerase,

QIAGEN), and PCR amplification products were analyzed by Sanger

sequencing using established methods.

3 | RESULTS

3.1 | Study characteristics

Our initial population included 1568 individuals, including 50 isolated

BA cases, 5 cases with multiple defects, and 1513 controls, that

underwent ES with 754,935 variants available prior to QC. Following

sample QC, 17 controls did not pass the inclusion threshold, and

32 controls failed relatedness checks, which included two duplicated

controls and 30 controls related at second–degree or closer to chil-

dren with BA. Similarly, following variant QC, we excluded 536,571

(71.1%) variants—34,999 (4.6%) variants failed the HWE threshold

p < 10�6; 426,983 (56.6%) had a call rate <0.99; 71,289 (9.4%) failed

GATK best practices; and 3300 (0.4%) had a 100-mers mappability

score less than one. The final dataset for the child–parent trio analysis

included 54 child–parent trios. For the case–control analysis following

QC, ES data on 55 cases, 1481 unrelated controls, and 218,364 SNVs

and INDELs were selected.

Overall, half of the children with BA (n = 28, 50.9%) and controls

(n = 740, 50.0%) were male (Table 1). Among those with BA, 54.5%

were of European ancestry (n = 30), 20.0% of African ancestry

(n = 11), and 10.9% of Asian ancestry (n = 6) based on PRIMUS v1.9

genetic ancestry estimation. In comparison, while the majority

(n = 1023, 69.1%) of the controls were also of European ancestry,

7.8% (n = 115) and 5.5% (n = 82) were of African and Asian ancestry,

respectively.



3.2 | Child–parent trio analysis

Rare de novo, homozygous, and compound heterozygous PAVs were

prioritized in 54 BA child–parent trios. Overall, a total of 42 rare de

novo PAVs were identified in 27 (50.0%) children with BA, of which

five (11.9%) were loss-of-function variants (Table S1). However, no de

novo PAVs were recurrent across more than one trio. A novel de novo

stop-gain variant in the Notch receptor 2 (NOTCH2) gene

(NM_024408.4:c.5194C > T,p.Gln1732Ter) was confirmed by Sanger

sequencing (Table 2). Moreover, we identified two children with BA

with compound heterozygous variants in the polycystic kidney disease

1 like 1 gene (PKD1L1), NM_138295.5:c.8485G > C(p.Glu2829Gln) /

NM_138295.5:c.7552G > A(p.Ala2518Thr) and NM_138295.5:

c.6473 + 2_6473 + 3del / NM_138295.5:c.731C > T(p.Pro244Leu)

(Table 2). All variants in NOTCH2 and PDK1L1 were identified among

children with isolated BA and orthogonally confirmed with Sanger

sequencing. Additional homozygous (n = 1 in two children with BA)

and compound heterozygous (n = 4 in six children with BA) variants

are outlined in Tables S2 and S3, respectively.

3.3 | Case–control association analysis

Overall, 78,316 rare PAVs in 6919 genes and 48,642 rare synonymous

variants in 6206 genes passed QC. The gene-based testing identified a

significant association between BA and IFRD2 (p = 3.75 � 10�6; Bonfer-

roni corrected p = 0.03) (Table 3). The IFRD2 gene-based association test

was based on 21 rare PAVs, of which three variants—NM_006764.5:

c.1016C > T(p.Ser339Phe), NM_006764.5:c.427G > A(p.Gly143Ser), and

NM_006764.5:c.791G > A(p.Arg264Gln)—had a p < 0.05 based on the

TABLE 1 Demographic characteristics of children with biliary atresia and unrelated parents of children without biliary atresia with exome
sequencing data and enrolled in the National Birth Defects Prevention Study, 1997–2011.

Demographic characteristics, n (%) BA children (n = 55) Non-BA parents (n = 1481) p-Value*

Sex

Male 28 (50.9) 740 (50.0) 0.89

Female 27 (49.1) 741 (50.0)

Genetic ancestrya

European 30 (54.5) 1023 (69.1) 0.01

Native American 4 (7.3) 113 (7.6)

African 11 (20.0) 115 (7.8)

Asian 6 (10.9) 82 (5.5)

Admixed 4 (7.3) 148 (10.0)

Abbreviation: BA, biliary atresia.
aGenetic ancestry was estimated with PRIMUS v1.9.

*p-Value based on the Pearson χ2 test.

TABLE 2 Rare protein-altering variants identified from exome sequencing data of children with biliary atresia and their parents enrolled in the
National Birth Defects Prevention Study, 1997–2011.

Inheritance
pattern Child Gene Variant

Variant
type AAFa REVEL CADD

ClinVar
variation ID

De novo

9 NOTCH2 NM_024408.4:c.5194C > T

(p.Gln1732Ter)

Stop gain 0 – 40.0 –

Autosomal

recessive

23 PKD1L1 NM_138295.5:c.8485G > C

(p.Glu2829Gln)

Missense 0 0.1 14.4 –

NM_138295.5:c.7552G > A

(p.Ala2518Thr)

Missense 2.5 � 10�5 0.14 9.64 –

32 PKD1L1 NM_138295.5:c.6473 + 2_6473

+ 3del

Deletion 4.0 � 10�4 – – 235796

NM_138295.5:c.731C > T

(p.Pro244Leu)

Missense 4.2 � 10�3 0.05 7.61 787669

Abbreviations: AAF, alternate allele frequency; REVEL, rare exome variant ensemble learner score; CADD, phred-scaled combined annotation-dependent

depletion score.
aAverage alternate allele frequency based on gnomAD v2.1.1 database.



single variant Score test (Table S4). Among cases that carried PAVs in

IFRD2, 50.0%, 12.5%, 25.0%, 12.5%, and 0.0% were of White, Hispanic,

Black, Asian, and Mixed ancestry, respectively, while 27.2%, 18.4%,

18.4%, 8.8%, and 27.2% of controls were of White, Hispanic, Black, Asian,

and Mixed ancestry, respectively (Fisher exact test p = 0.3). No other

genes met the gene-based Bonferroni corrected p < 0.05 threshold. The

gene-based genomic inflation factor in the missense rare PAVs analysis

was observed at 1.13 (Figure S1). Additionally, no significant associations

were identified among rare synonymous variants (Figure S2).

In the analysis of common variants, 15,944 SNVs and INDELs at

MAF ≥0.05 were evaluated (Figure 1, Figure S3). While no variants

were significant at the Bonferroni corrected threshold

(p < 3.14 � 10�5), the top three hits included two synonymous

variants—NM_001845.6:c.3189A > T(p.Arg1063=) and NM_001845.6:

c.3183G > A(p.Gly1061=)—in COL4A1 and a missense variant—

NM_007374.3:c.421C > A(p.His141Asn)—in SIX6 (Supplementary

Table 5). In the gene-based association analysis, there was no statistical

association for COL4A1 (p = 0.3). No rare PAVs were present for SIX6.

4 | DISCUSSION

Overall, our study adds to emerging evidence on the role of the

genetic underpinnings of isolated BA. Specifically, among children

with isolated BA, we observed variants in PDK1L1, a gene similarly

described among children with syndromic BA (Berauer et al., 2019)

and identified susceptibility PAVs in IFRD2. Our assessment did not

suggest that recurrent de novo PAVs account for a sizeable proportion

of cases. However, while we did not identify any recurrent de novo

PAVs across trios, our finding related to NOTCH2, a disease gene

found in children with Alagille syndrome, may point to the unique

challenges of diagnosing BA.

Variants in the Notch signaling pathway, including in NOTCH2,

underlie Alagille syndrome, which can mimic BA in early infancy with

presentations of cholestasis and bile duct paucity (Gilbert et al., 2019;

Kamath et al., 2012; ShenTu et al., 2021). Hence, it is possible that

the infant identified with a variant in NOTCH2 was misdiagnosed with

BA. This is plausible because distinguishing BA and Alagille syndrome

can be a clinical challenge. Both phenotypes may present similarities

in the first weeks of life, and occasionally infants with Alagille syn-

drome will undergo a Kasai hepatoportoenterostomy, a surgical proce-

dure that is the first line of treatment for BA (Hartley et al., 2009; Lee

et al., 2015). Furthermore, the infant with the variant in NOTCH2 had

a Kasai procedure reported in the medical record, but information on

long term follow-up was not available. Alternatively, we cannot rule

out the possibility that NOTCH2 variants and the associated Notch

signaling pathway might have a role in the development of BA, and

the lack of NOTCH2 variants in additional study cases may point to

TABLE 3 Gene identified from the sequence kernel-based association analysis of rare missense protein-altering variants in exome sequencing
data of children with biliary atresia enrolled in the National Birth Defects Prevention Study, 1997–2011.

Gene No. rare variants Case cumulative AAFa Control cumulative AAFa SKAT p-value (adjusted*)

IFRD2 21 0.004 0.002 3.75 � 10�6 (0.03)

Abbreviations: AAF, alternate allele frequency; SKAT, sequence-based kernel association test.
aCumulative AAF was calculated as the total alternate allele count over the total allele number across all variants in a gene within each cohort.

*p-Values adjusted for multiple testing using Bonferroni correction.

F IGURE 1 Manhattan plot for common variants evaluated in a genome-wide association analysis from exome sequencing data of children
with biliary atresia and unrelated parents of children without biliary atresia enrolled in the National Birth Defects Prevention Study, 1997–2011.
Horizontal threshold line indicates the Bonferroni corrected p-value.



BA having multiple etiologies (Mao et al., 2018; Zagory et al., 2017).

Future larger studies could help inform if variants in Notch pathway

genes are found in a subset of BA cases.

Our finding of compound heterozygous PAVs in PKD1L1 among

two children with BA supports a prior report of 67 patients with BA

and co-occurring laterality defects, in which five children were identi-

fied with bi-allelic variants in this gene (Berauer et al., 2019). Unlike

the previous assessment where all patients had co-occurring laterality

defects, individuals in our study were predominantly isolated cases,

suggesting these groups could have overlapping etiologies. Of inter-

est, the variant NM_138295.5:c.6473 + 2_6473 + 3del has been

reported independently by three clinical groups to be likely patho-

genic (https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV0002357

96.4) and was identified to be associated with laterality defects in

humans (Vetrini et al., 2016). PKD1L1 is a member of the polycystic

kidney disease family of large membrane proteins called polycystin

proteins. Located in the primary cilia of the renal epithelium, PKD1L1

along with PKD2 form a Ca2+ channel complex that regulates the cili-

ary motility and extracellular fluid flow, two processes required for

left–right axis formation in vertebrates (Delling et al., 2013; Grimes

et al., 2016; Hojo et al., 2007; Kamura et al., 2011). Given the function

of cilia in modulating biliary flow and its contribution to cholangiopa-

thies (Mansini et al., 2018; Masyuk et al., 2008), it is biologically plau-

sible that abnormal cholangiocyte ciliary structure and function

contribute to cholangiopathy development observed in BA. However,

the specific mechanistic role of PKD1L1 in the pathogenesis of cholan-

giopathy and BA remains largely unknown.

In one of the only other large-scale trio-based sequencing assess-

ments of isolated BA, Rajagopalan et al. prioritized 66 de novo variants

in 66 genes including potentially deleterious variants in STIP1 and

REV1 in an analysis of 30 child–parent trios (Rajagopalan et al., 2020).

However, in our evaluation of 54 child–parent trios, we did not

observe de novo PAVs in STIP1 or REV1. This absence in replication of

previously reported de novo variants could be attributed to the genetic

ancestry of the study populations or the genetic heterogeneity of

BA. For example, two recent family-based sequencing assessments of

BA among Asian children identified variants in novel genes including

AMER1, INVS, OCRL, PCNT, KIF3B, and TTC17 suggesting a genetic

heterogeneity of BA (Lam et al., 2021; Tran et al., 2021). The lack of

replication and identification of de novo variants across multiple stud-

ies highlight the complexity of the etiology of BA and support the

hypothesis that isolated BA is multifactorial.

In an independent analysis of child–parent trios from Southeast

Asia (n = 89), investigators concluded that variants in ciliary genes

may play a role in susceptibility to nonsyndromic BA (Lam

et al., 2021). To further explore these findings in our population, we

evaluated variants in these genes using a similar strategy. Specifically,

Lam et al. noted that 37.5% of protein truncating de novo variants

identified in trios were in ciliary genes, whereas in our population,

none of the five protein-truncating de novo variants were in ciliary

genes. Additionally, Lam et al. reported 31.5% of individuals with BA

carried at least one rare damaging variant in a ciliary gene, while we

observed that 7.4% of cases carried these variants. Moreover, we did

not detect an increased burden of rare variants among ciliary or liver

expressed ciliary gene sets (SKAT p = 0.4 in both gene sets). As with

the assessment by Rajagopalan et al., differences in findings could be

due to the etiologic complexity of BA, as well as differences in genetic

ancestry across populations.

A notable finding in our case–control analysis was the identifica-

tion of IFRD2 among children with BA harboring rare PAVs. Reports

on the role of IFDR2 on BA etiology are limited; however, there is evi-

dence suggesting IFRD2 plays an important role in gastrointestinal

development. For example, IFRD2 was highly expressed in the hepatic

primordium in the initial stages of embryogenesis in a murine model

(Buanne et al., 1998). IFRD2, along with its paralogue IFRD1, are

thought to be involved in fat metabolism and adipogenesis where

Wnt signaling, an important negative regulator of adipocyte differenti-

ation, was highly upregulated in IFRD2 knockout mice (Vietor

et al., 2020). More recently, IFRD2 variants have been identified in

relation to sporadic colorectal cancer and high light scatter reticulo-

cyte count in human studies (Barton et al., 2021; Yu et al., 2018).

Additionally, IFRD2 has been described to be associated with inter-

feron (IFN) activities, a cytokine with involvement in immunomodula-

tory responses, which may further support its potential implication in

BA development (Cheluvappa et al., 2015; Stark et al., 1998). For

example, studies involving human BA livers have observed affected

hepatic microenvironments to be pro-inflammatory and pro-fibrotic

with overexpression of activation markers including IFN-γ (Asai

et al., 2015; Mack et al., 2004). While the mechanisms underlying the

association between IFRD2 and BA are unclear, exploring this finding

in independent populations is warranted.

In our assessment of common variants, we did not observe any of

the previously reported BA associated loci in ADD3, GPC1, ARF6, or

EFEMP1 (Chen et al., 2018; Garcia-Barcel�o et al., 2010; Ningappa

et al., 2015). However, this is not unexpected as the reported variants

were intronic and not captured in our sequencing platform. However,

we did observe some other interesting variants. Specifically, while not

statistically significant after correcting for multiple testing, we identi-

fied two synonymous variants in COL4A1 and one missense variant in

SIX6. While the variants identified in COL4A1 were reported to be

likely benign in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/

variation/VCV000258250.19, https://www.ncbi.nlm.nih.gov/clinvar/

variation/VCV000258251.19), an up-regulated transcription of sev-

eral inflammatory and fibrosis genes, including COL4A1, was observed

in studies using murine models with chronic cholangitis (Nakken

et al., 2007, 2009). In human tissues with hepatocellular carcinoma,

COL4A1 has been hypothesized to promote cell proliferation and

metastasis (Wang et al., 2020; Zhang et al., 2021). As with IFRD2, the

role of these variants and genes on BA susceptibility is not clear and

should be considered in future assessments.

Our study should be considered in light of certain limitations. As

with previous assessments of BA, our sample size was relatively small,

allowing us to identify only highly penetrant rare variants. This limita-

tion is partly a function of the rarity and low prevalence of BA, and

future studies leveraging multiple data sources to increase the sample

size would improve statistical power to detect variants with small or

https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000235796.4
https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000235796.4
https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000258250.19
https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000258250.19
https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000258251.19
https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000258251.19


moderate effects on BA risk. In addition, the use of parents from other

birth defect groups as controls may bias our results; however, we did

not observe significant genomic inflation from the common variants

or gene-based analyses. Nonetheless, further studies may benefit

from including unaffected children as controls for association testing.

Our study also has several strengths. A primary strength is the

use of a trio-based design to discern between inherited versus de novo

PAVs. Another strength is that children were systematically ascer-

tained for the NBDPS using population-based birth defect surveillance

programs. NBDPS is a multisite study with active surveillance

methods that ascertain ethnically diverse population-based cases

rather than hospital or clinic-based cases, minimizing potential selec-

tion bias. Finally, medical records for each child were reviewed by clin-

ical geneticists, producing a well-characterized population.

In conclusion, our assessment adds to our growing understanding

of the genetic etiologies underlying isolated BA and the potential

complexity and heterogeneity of this phenotype. Future assessments

would benefit from larger sample sizes, as our assessment does not

suggest that a large proportion of cases are due to highly penetrant

rare variants. Additionally, our data do not support that recurrent de

novo variants play an important role in BA susceptibility. While our

findings support the role of PKD1L1 in the developmental origins of

BA, our findings related to NOTCH2 and IFRD2 warrant additional

study.
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