437 research outputs found

    Medical Physics: forming and testing solutions to clinical problems

    Get PDF
    According to the European Federation of Organizations for Medical Physics (EFOMP) policy statement No. 13, “The rapid advance in the use of highly sophisticated equipment and procedures in the medical field increasingly depends on information and communication technology. In spite of the fact that the safety and quality of such technology is vigorously tested before it is placed on the market, it often turns out that the safety and quality is not sufficient when used under hospital working conditions. To improve safety and quality for patient and users, additional safeguards and related monitoring, as well as measures to enhance quality, are required. Furthermore a large number of accidents and incidents happen every year in hospitals and as a consequence a number of patients die or are injured. Medical Physicists are well positioned to contribute towards preventing these kinds of events”. The newest developments related to this increasingly important medical speciality were presented during the 8th European Conference of Medical Physics 2014 which was held in Athens, 11–13 September 2014 and hosted by the Hellenic Association of Medical Physicists (HAMP) in collaboration with the EFOMP and are summarized in this issue

    Economic and biological costs of cardiac imaging

    Get PDF
    Medical imaging market consists of several billion tests per year worldwide. Out of these, at least one third are cardiovascular procedures. Keeping in mind that each test represents a cost, often a risk, and a diagnostic hypothesis, we can agree that every unnecessary and unjustifiable test is one test too many. Small individual costs, risks, and wastes multiplied by billions of examinations per year represent an important population, society and environmental burden. Unfortunately, the appropriateness of cardiac imaging is extra-ordinarily low and there is little awareness in patients and physicians of differential costs, radiological doses, and long term risks of different imaging modalities. For a resting cardiac imaging test, being the average cost (not charges) of an echocardiogram equal to 1 (as a cost comparator), the cost of a CT is 3.1x, of a SPECT 3.27x, of a Cardiovascular Magnetic Resonance imaging 5.51x, of a PET 14.03x, and of a right and left heart catheterization 19.96x. For stress cardiac imaging, compared with the treadmill exercise test equal to 1 (as a cost comparator), the cost of stress echocardiography is 2.1x and of a stress SPECT scintigraphy is 5.7x. Biohazards and downstream long-term costs linked to radiation-induced oncogenesis should also be considered. The radiation exposure is absent in echo and magnetic resonance, and corresponds to 500 chest x rays for a sestamibi cardiac stress scan and to 1150 chest x rays for a thallium scan. The corresponding extra-risk in a lifetime of fatal cancer is 1 in 2000 exposed patients for a sestamibi stress and 1 in 1000 for a thallium scan. Increased awareness of economic, biologic, and environmental costs of cardiac imaging will hopefully lead to greater appropriateness, wisdom and prudence from both the prescriber and the practitioner. In this way, the sustainability of cardiac imaging will eventually improve
    • 

    corecore