25 research outputs found

    A non-controlled, single arm, open label, phase II study of intravenous and intratumoral administration of ParvOryx in patients with metastatic, inoperable pancreatic cancer: ParvOryx02 protocol

    Get PDF
    Background: Metastatic pancreatic cancer has a dismal prognosis, with a mean six-month progression-free survival of approximately 50% and a median survival of about 11 months. Despite intensive research, only slight improvements of clinical outcome could be achieved over the last decades. Hence, new and innovative therapeutic strategies are urgently required. ParvOryx is a drug product containing native parvovirus H-1 (H-1PV). Since H-1PV was shown to exert pronounced anti-neoplastic effects in pre-clinical models of pancreatic cancer, the drug appears to be a promising candidate for treatment of this malignancy. Methods: ParvOryx02 is a non-controlled, single arm, open label, dose-escalating, single center trial. In total seven patients with pancreatic cancer showing at least one hepatic metastasis are to be treated with escalating doses of ParvOryx according to the following schedule: i) 40% of the total dose infused intravenously in equal fractions on four consecutive days, ii) 60% of the total dose injected on a single occasion directly into the hepatic metastasis at varying intervals after intravenous infusions. The main eligibility criteria are: age ≥ 18 years, disease progression despite first-line chemotherapy, and at least one hepatic metastasis. Since it is the second trial within the drug development program, the study primarily explores safety and tolerability after further dose escalation of ParvOryx. The secondary objectives are related to the evaluation of certain aspects of anti-tumor activity and clinical efficacy of the drug. Discussion: This trial strongly contributes to the clinical development program of ParvOryx. The individual hazards for patients included in the current study and the environmental risks are addressed and counteracted adequately. Besides information on safety and tolerability of the treatment after further dose escalation, thorough evaluations of pharmacokinetics and intratumoral spread as well as proof-of-concept (PoC) in pancreatic cancer will be gained in the course of the trial. Trial registration: ClinicalTrials.gov-ID: NCT02653313, Registration date: Dec. 4th, 2015

    Tumor-Specific Delivery of Immune Checkpoint Inhibitors by Engineered AAV Vectors

    Get PDF
    Immune checkpoint inhibitors (ICIs) can block distinct receptors on T cells or tumor cells thus preventing T cell inactivation and tumor immune escape. While the clinical response to treatment with ICIs in cancer patients is impressive, this therapy is often associated with a number of immune-related adverse events. There is therefore a need to explore innovative strategies of tumor-specific delivery of ICIs. Delivery of therapeutic proteins on a genetic level can be accomplished with viral vectors including those derived from adeno-associated virus (AAV). Here, we assessed the tumor-targeted Her2-AAV, a receptor-targeted AAV vector binding to the tumor antigen Her2/neu for cell entry, as vehicle for ICI gene delivery. Initially, we packaged the coding sequence of a scFv-Fc fusion protein directed against mouse programmed cell death protein-1 (PD-1) into Her2-AAV. Upon transduction of Her2/neu+ RENCA cells, AAV-encoded αPD-1 was readily detectable in the cell culture supernatant and revealed specific binding to its target antigen. In vivo, in BALB/c mice bearing subcutaneous RENCA-Her2/neu tumors, Her2-AAV mediated specific gene delivery into tumor tissue upon intravenous administration as verified by luciferase gene transfer and in vivo imaging thus demonstrating unimpaired tumor-targeting by Her2-AAV vectors in immunocompetent animals. When delivering the αPD-1 gene, levels of ICI were similar in tumor tissue for Her2-AAV and AAV2 but substantially reduced in liver for Her2-AAV. When combined with chemotherapy a tendency for reduced progression of tumor growth was documented for Her2-AAV treated mice. To get closer to the clinical situation, AAV constructs that deliver the complete coding sequence of the therapeutic antibody nivolumab which is directed against human PD-1 were generated next. The AAV-Nivolumab constructs were expressed and released from transduced MDA-MB-453 cells in vitro and from RENCA-Her2/neu cells upon intratumoral as well as intravenous administration in vivo. Antibody processing and expression levels were further improved through optimization of construct design. In conclusion, we provide proof-of-principle for redirecting the biodistribution of ICIs from liver and serum to tumor tissue by the use of engineered AAV vectors. This strategy can be easily combined with other types of immunotherapeutic concepts

    Virotherapy combined with anti-PD-1 transiently reshapes the tumor immune environment and induces anti-tumor immunity in a preclinical PDAC model

    Get PDF
    IntroductionPancreatic ductal adenocarcinoma (PDAC) is largely refractory to cancer immunotherapy with PD-1 immune checkpoint blockade (ICB). Oncolytic virotherapy has been shown to synergize with ICB. In this work, we investigated the combination of anti-PD-1 and oncolytic measles vaccine in an immunocompetent transplantable PDAC mouse model.MethodsWe characterized tumor-infiltrating T cells by immunohistochemistry, flow cytometry and T cell receptor sequencing. Further, we performed gene expression profiling of tumor samples at baseline, after treatment, and when tumors progressed. Moreover, we analyzed systemic anti-tumor and anti-viral immunity.ResultsCombination treatment significantly prolonged survival compared to monotherapies. Tumor-infiltrating immune cells were increased after virotherapy. Gene expression profiling revealed a unique, but transient signature of immune activation after combination treatment. However, systemic anti-tumor immunity was induced by virotherapy and remained detectable even when tumors progressed. Anti-PD-1 treatment did not impact anti-viral immunity.DiscussionOur results indicate that combined virotherapy and ICB induces anti-tumor immunity and reshapes the tumor immune environment. However, further refinement of this approach may be required to develop its full potential and achieve durable efficacy

    AMI-LA radio continuum observations of Spitzer c2d small clouds and cores: Serpens region

    Get PDF
    We present deep radio continuum observations of the cores identified as deeply embedded young stellar objects in the Serpens molecular cloud by the Spitzer c2d programme at a wavelength of 1.8cm with the Arcminute Microkelvin Imager Large Array (AMI-LA). These observations have a resolution of ~30arcsec and an average sensitivity of 19microJy/beam. The targets are predominantly Class I sources, and we find the detection rate for Class I objects in this sample to be low (18%) compared to that of Class 0 objects (67%), consistent with previous works. For detected objects we examine correlations of radio luminosity with bolometric luminosity and envelope mass and find that these data support correlations found by previous samples, but do not show any indiction of the evolutionary divide hinted at by similar data from the Perseus molecular cloud when comparing radio luminosity with envelope mass. We conclude that envelope mass provides a better indicator for radio luminosity than bolometric luminosity, based on the distribution of deviations from the two correlations. Combining these new data with archival 3.6cm flux densities we also examine the spectral indices of these objects and find an average spectral index of 0.53+/-1.14, consistent with the canonical value for a partially optically thick spherical or collimated stellar wind. However, we caution that possible inter-epoch variability limits the usefulness of this value, and such variability is supported by our identification of a possible flare in the radio history of Serpens SMM 1.Comment: accepted MNRA

    Measles Virus as an Oncolytic Immunotherapy

    No full text
    Measles virus (MeV) preferentially replicates in malignant cells, leading to tumor lysis and priming of antitumor immunity. Live attenuated MeV vaccine strains are therefore under investigation as cancer therapeutics. The versatile MeV reverse genetics systems allows for engineering of advanced targeted, armed, and shielded oncolytic viral vectors. Therapeutic efficacy can further be enhanced by combination treatments. An emerging focus in this regard is combination immunotherapy, especially with immune checkpoint blockade. Despite challenges arising from antiviral immunity, availability of preclinical models, and GMP production, early clinical trials have demonstrated safety of oncolytic MeV and yielded promising efficacy data. Future clinical trials with engineered viruses, rational combination regimens, and comprehensive translational research programs will realize the potential of oncolytic immunotherapy

    Lighting a Fire in the Tumor Microenvironment Using Oncolytic Immunotherapy

    No full text
    Oncolytic virus (OV) therapy is potentially a game-changing cancer treatment that has garnered significant interest due to its versatility and multi-modal approaches towards tumor eradication. In the field of cancer immunotherapy, the immunological phenotype of the tumor microenvironment (TME) is an important determinant of disease prognosis and therapeutic success. There is accumulating data that OVs are capable of dramatically altering the TME immune landscape, leading to improved antitumor activity alone or in combination with assorted immune modulators. Herein, we review how OVs disrupt the immunosuppressive TME and can be used strategically to create a “pro-immune” microenvironment that enables and promotes potent, long-lasting host antitumor immune responses. Keywords: Tumor microenvironment, Oncolytic viruses, Cancer immunotherapies, Combination therapie

    Oncolytic measles vaccines encoding PD-1 and PD-L1 checkpoint blocking antibodies to increase tumor-specific T cell memory

    No full text
    PD-1/PD-L1 checkpoint blockade has achieved unprecedented success in cancer immunotherapy. Nevertheless, many immune-excluded tumors are resistant to therapy. Combination with oncolytic virotherapy may overcome resistance by inducing acute inflammation, immune cell recruitment, and remodeling of the tumor immune environment. Here, we assessed the combination of oncolytic measles vaccine (MV) vectors and PD-1/PD-L1 blockade. In the MC38cea model of measles virus oncolysis, MV combined with anti-PD-1 and MV vectors encoding anti-PD-1 or anti-PD-L1 antibodies achieved modest survival benefits compared with control MV or vectors encoding the antibody constant regions only. Analyses of tumor samples and tumor-draining lymph nodes revealed slight increases in intratumoral T cell effector cytokines as well as a shift toward an effector memory phenotype in the T cell compartment. Importantly, increased IFN-γ recall responses were observed in tumor rechallenge experiments with mice in complete tumor remission after treatment with MV encoding anti-PD-1 or anti-PD-L1 compared with control MV. These results prompted us to generate MV encoding the clinically approved agents pembrolizumab and nivolumab. Previously, we have generated MV encoding atezolizumab. We demonstrated the functionality of the novel vectors in vitro. We envision these vectors as therapeutics that induce and support durable anti-tumor immune memory

    Artificial riboswitches for gene expression and replication control of DNA and RNA viruses

    No full text
    Aptazymes are small, ligand-dependent self-cleaving ribozymes that function independently of transcription factors and can be customized for induction by various small molecules. Here, we introduce these artificial riboswitches for regulation of DNA and RNA viruses. We hypothesize that they represent universally applicable tools for studying viral gene functions and for applications as a safety switch for oncolytic and live vaccine viruses. Our study shows that the insertion of artificial aptazymes into the adenoviral immediate early gene E1A enables small-molecule–triggered, dose-dependent inhibition of gene expression. Aptazyme-mediated shutdown of E1A expression translates into inhibition of adenoviral genome replication, infectious particle production, and cytotoxicity/oncolysis. These results provide proof of concept for the aptazyme approach for effective control of biological outcomes in eukaryotic systems, specifically in virus infections. Importantly, we also demonstrate aptazyme-dependent regulation of measles virus fusion protein expression, translating into potent reduction of progeny infectivity and virus spread. This not only establishes functionality of aptazymes in fully cytoplasmic genetic systems, but also implicates general feasibility of this strategy for application in viruses with either DNA or RNA genomes. Our study implies that gene regulation by artificial riboswitches may be an appealing alternative to Tet- and other protein-dependent gene regulation systems, based on their small size, RNA-intrinsic mode of action, and flexibility of the inducing molecule. Future applications range from gene analysis in basic research to medicine, for example as a safety switch for new generations of efficiency-enhanced oncolytic viruses
    corecore