5,792 research outputs found

    Models relating the radio emission and ionised gas in Seyfert nuclei

    Get PDF
    Possible models are discussed in which the radio emitting components in Seyfert II nuclei can compress and accelerate the ambient nuclear medium to produce the characteristics of the narrow line region. A first order model, which considers only the expansion of the radio components, is briefly described. However, in many Seyfert nuclei it appears that the linear motion of the radio components is also important. This can result in shock heating of the ambient medium, and if the cooling time is long enough, can lead to a displacement between the radio component and the associated emission lines. This effect may be present in NGC 1068 and NGC 5929 and by considering ram pressure balance and the cooling length it is possible to estimate lobe velocities and ambient densities

    The morphology of Sersic-Pastoriza galaxies

    Get PDF
    The authors present the preliminary results of their radio-continuum and neutral hydrogen observations of Sersic-Pastoriza (S-P) galaxies. They show that the central regions contain a population of compact features thought to be young supernova remnants (SNRs) and discuss the overall morphology of the nuclei

    A Dense Gas Trigger for OH Megamasers

    Full text link
    HCN and CO line diagnostics provide new insight into the OH megamaser (OHM) phenomenon, suggesting a dense gas trigger for OHMs. We identify three physical properties that differentiate OHM hosts from other starburst galaxies: (1) OHMs have the highest mean molecular gas densities among starburst galaxies; nearly all OHM hosts have = 10^3-10^4 cm^-3 (OH line-emitting clouds likely have n(H2) > 10^4 cm^-3). (2) OHM hosts are a distinct population in the nonlinear part of the IR-CO relation. (3) OHM hosts have exceptionally high dense molecular gas fractions, L(HCN)/L(CO)>0.07, and comprise roughly half of this unusual population. OH absorbers and kilomasers generally follow the linear IR-CO relation and are uniformly distributed in dense gas fraction and L(HCN), demonstrating that OHMs are independent of OH abundance. The fraction of non-OHMs with high mean densities and high dense gas fractions constrains beaming to be a minor effect: OHM emission solid angle must exceed 2 pi steradians. Contrary to conventional wisdom, IR luminosity does not dictate OHM formation; both star formation and OHM activity are consequences of tidal density enhancements accompanying galaxy interactions. The OHM fraction in starbursts is likely due to the fraction of mergers experiencing a temporal spike in tidally driven density enhancement. OHMs are thus signposts marking the most intense, compact, and unusual modes of star formation in the local universe. Future high redshift OHM surveys can now be interpreted in a star formation and galaxy evolution context, indicating both the merging rate of galaxies and the burst contribution to star formation.Comment: 5 pages, 3 figures, 1 table, accepted by ApJ Letter

    Processing and Transmission of Information

    Get PDF
    Contains reports on three research projects

    The use of permutation representations in structural computations in large finite matrix groups

    Get PDF
    We determine the minimal degree permutation representations of all finite groups with trivial soluble radical, and describe applications to structural computations in large finite matrix groups that use the output of the CompositionTree algorithm. We also describe how this output can be used to help find an effective base and strong generating set for such groups. We have implemented the resulting algorithms in Magma, and we report on their performance

    Diagnostic Ultrasound Induced Inertial Cavitation To Non-Invasively Restore Coronary And Microvascular Flow In Acute Myocardial Infarction

    Get PDF
    Ultrasound induced cavitation has been explored as a method of dissolving intravascular and microvascular thrombi in acute myocardial infarction. The purpose of this study was to determine the type of cavitation required for success, and whether longer pulse duration therapeutic impulses (sustaining the duration of cavitation) could restore both microvascular and epicardial flow with this technique. Accordingly, in 36 hyperlipidemic atherosclerotic pigs, thrombotic occlusions were induced in the mid-left anterior descending artery. Pigs were then randomized to either a) 1/2 dose tissue plasminogen activator (0.5 mg/kg) alone; or same dose plasminogen activator and an intravenous microbubble infusion with either b) guided high mechanical index short pulse (2.0 MI; 5 usec) therapeutic ultrasound impulses; or c) guided 1.0 mechanical index long pulse (20 usec) impulses. Passive cavitation detectors indicated the high mechanical index impulses (both long and short pulse duration) induced inertial cavitation within the microvasculature. Epicardial recanalization rates following randomized treatments were highest in pigs treated with the long pulse duration therapeutic impulses (83% versus 59% for short pulse, and 49% for tissue plasminogen activator alone; p \u3c 0.05). Even without epicardial recanalization, however, early microvascular recovery occurred with both short and long pulse therapeutic impulses (p \u3c 0.005 compared to tissue plasminogen activator alone), and wall thickening improved within the risk area only in pigs treated with ultrasound and microbubbles. We conclude that although short pulse duration guided therapeutic impulses from a diagnostic transducer transiently improve microvascular flow, long pulse duration therapeutic impulses produce sustained epicardial and microvascular re-flow in acute myocardial infarction

    Sub 20 nm Short Channel Carbon Nanotube Transistors

    Full text link
    Carbon nanotube field-effect transistors with sub 20 nm long channels and on/off current ratios of > 1000000 are demonstrated. Individual single-walled carbon nanotubes with diameters ranging from 0.7 nm to 1.1 nm grown from structured catalytic islands using chemical vapor deposition at 700 degree Celsius form the channels. Electron beam lithography and a combination of HSQ, calix[6]arene and PMMA e-beam resists were used to structure the short channels and source and drain regions. The nanotube transistors display on-currents in excess of 15 microA for drain-source biases of only 0.4 Volt.Comment: Nano Letters in pres

    Report of the Working Group on the Composition of Ultra High Energy Cosmic Rays

    Full text link
    For the first time a proper comparison of the average depth of shower maximum (XmaxX_{\rm max}) published by the Pierre Auger and Telescope Array Observatories is presented. The XmaxX_{\rm max} distributions measured by the Pierre Auger Observatory were fit using simulated events initiated by four primaries (proton, helium, nitrogen and iron). The primary abundances which best describe the Auger data were simulated through the Telescope Array (TA) Middle Drum (MD) fluorescence and surface detector array. The simulated events were analyzed by the TA Collaboration using the same procedure as applied to their data. The result is a simulated version of the Auger data as it would be observed by TA. This analysis allows a direct comparison of the evolution of ⟨Xmax⟩\langle X_{\rm max} \rangle with energy of both data sets. The ⟨Xmax⟩\langle X_{\rm max} \rangle measured by TA-MD is consistent with a preliminary simulation of the Auger data through the TA detector and the average difference between the two data sets was found to be (2.9±2.7  (stat.)±18  (syst.)) g/cm2(2.9 \pm 2.7\;(\text{stat.}) \pm 18\;(\text{syst.}))~\text{g/cm}^2.Comment: To appear in the Proceedings of the UHECR workshop, Springdale USA, 201

    The instability of Alexander-McTague crystals and its implication for nucleation

    Full text link
    We show that the argument of Alexander and McTague, that the bcc crystalline structure is favored in those crystallization processes where the first order character is not too pronounced, is not correct. We find that any solution that satisfies the Alexander-McTague condition is not stable. We investigate the implication of this result for nucleation near the pseudo- spinodal in near-meanfield systems.Comment: 20 pages, 0 figures, submitted to Physical Review

    A Compendium of Far-Infrared Line and Continuum Emission for 227 Galaxies Observed by the Infrared Space Observatory

    Get PDF
    Far-infrared line and continuum fluxes are presented for a sample of 227 galaxies observed with the Long Wavelength Spectrometer on the Infrared Space Observatory. The galaxy sample includes normal star-forming systems, starbursts, and active galactic nuclei covering a wide range of colors and morphologies. The dataset spans some 1300 line fluxes, 600 line upper limits, and 800 continuum fluxes. Several fine structure emission lines are detected that arise in either photodissociation or HII regions: [OIII]52um, [NIII]57um, [OI]63um, [OIII]88um, [NII]122um, [OI]145um, and [CII]158um. Molecular lines such as OH at 53um, 79um, 84um, 119um, and 163um, and H2O at 58um, 66um, 75um, 101um, and 108um are also detected in some galaxies. In addition to those lines emitted by the target galaxies, serendipitous detections of Milky Way [CII]158um and an unidentified line near 74um in NGC1068 are also reported. Finally, continuum fluxes at 52um, 57um, 63um, 88um, 122um, 145um, 158um, and 170um are derived for a subset of galaxies in which the far-infrared emission is contained within the ~75" ISO LWS beam. The statistics of this large database of continuum and line fluxes, including trends in line ratios with the far-infrared color and infrared-to-optical ratio, are explored.Comment: Accepted for publication in the Astrophysical Journal Supplement Serie
    • …
    corecore