64 research outputs found
Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure
Heart failure constitutes a major public health problem worldwide. The electrophysiological remodeling of failing hearts sets the stage for malignant arrhythmias, in which the role of the late Na+ current (INaL) is relevant and is currently under investigation. In this study we examined the role of INaL in the electrophysiological phenotype of ventricular myocytes, and its proarrhythmic effects in the failing heart. A model for cellular heart failure was proposed using a modified version of Grandi et al. model for human ventricular action potential that incorporates the formulation of INaL. A sensitivity analysis of the model was performed and simulations of the pathological electrical activity of the cell were conducted. The proposed model for the human INaL and the electrophysiological remodeling of myocytes from failing hearts accurately reproduce experimental observations. The sensitivity analysis of the modulation of electrophysiological parameters of myocytes from failing hearts due to ion channels remodeling, revealed a role for INaL in the prolongation of action potential duration (APD), triangulation of the shape of the AP, and changes in Ca2+ transient. A mechanistic investigation of intracellular Na+ accumulation and APD shortening with increasing frequency of stimulation of failing myocytes revealed a role for the Na+/K+ pump, the Na+/Ca2+ exchanger and INaL. The results of the simulations also showed that in failing myocytes, the enhancement of INaL increased the reverse rate-dependent APD prolongation and the probability of initiating early afterdepolarizations. The electrophysiological remodeling of failing hearts and especially the enhancement of the INaL prolong APD and alter Ca2+ transient facilitating the development of early afterdepolarizations. An enhanced INaL appears to be an important contributor to the electrophysiological phenotype and to the dysregulation of [Ca2+]i homeostasis of failing myocytes
Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδC can be reversed by inhibition of late Na+ current
Transgenic (TG) Ca2+/calmodulin-dependent protein kinase II (CaMKII) δC mice develop systolic heart failure (HF). CaMKII regulates intracellular Ca2+ handling proteins as well as sarcolemmal Na+ channels. We hypothesized that CaMKII also contributes to diastolic dysfunction and arrhythmias via augmentation of the late Na+ current (late INa) in early HF (8-week-old TG mice). Echocardiography revealed severe diastolic dysfunction in addition to decreased systolic ejection fraction. Premature arrhythmogenic contractions (PACs) in isolated isometrically twitching papillary muscles only occurred in TG preparations (5 vs. 0, P < 0.05) which could be completely terminated when treated with the late INa inhibitor ranolazine (Ran, 5 μmol/L). Force–frequency relationships revealed significantly reduced twitch force amplitudes in TG papillary muscles. Most importantly, diastolic tension increased with raising frequencies to a greater extent in TG papillary muscles compared to WT specimen (at 10 Hz: 3.7 ± 0.4 vs. 2.5 ± 0.3 mN/mm2; P < 0.05). Addition of Ran improved diastolic dysfunction to 2.1 ± 0.2 mN/mm2 (at 10 Hz; P < 0.05) without negative inotropic effects. Mechanistically, the late INa was markedly elevated in myocytes isolated from TG mice and could be completely reversed by Ran. In conclusion, our results show for the first time that TG CaMKIIδC overexpression induces diastolic dysfunction and arrhythmogenic triggers possibly via an enhanced late INa. Inhibition of elevated late INa had beneficial effects on arrhythmias as well as diastolic function in papillary muscles from CaMKIIδC TG mice. Thus, late INa inhibition appears to be a promising option for diastolic dysfunction and arrhythmias in HF where CaMKII is found to be increased
Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study
Background: Heart failure is a final common pathway or descriptor for various cardiac pathologies. It is associated with
sudden cardiac death, which is frequently caused by ventricular arrhythmias. Electrophysiological remodeling, intercellular
uncoupling, fibrosis and autonomic imbalance have been identified as major arrhythmogenic factors in heart failure
etiology and progression.
Objective: In this study we investigate in silico the role of electrophysiological and structural heart failure remodeling on the
modulation of key elements of the arrhythmogenic substrate, i.e., electrophysiological gradients and abnormal impulse
propagation.
Methods: Two different mathematical models of the human ventricular action potential were used to formulate models of
the failing ventricular myocyte. This provided the basis for simulations of the electrical activity within a transmural
ventricular strand. Our main goal was to elucidate the roles of electrophysiological and structural remodeling in setting the
stage for malignant life-threatening arrhythmias.
Results: Simulation results illustrate how the presence of M cells and heterogeneous electrophysiological remodeling in the
human failing ventricle modulate the dispersion of action potential duration and repolarization time. Specifically, selective
heterogeneous remodeling of expression levels for the Na+
/Ca2+ exchanger and SERCA pump decrease these
heterogeneities. In contrast, fibroblast proliferation and cellular uncoupling both strongly increase repolarization
heterogeneities. Conduction velocity and the safety factor for conduction are also reduced by the progressive structural
remodeling during heart failure.
Conclusion: An extensive literature now establishes that in human ventricle, as heart failure progresses, gradients for
repolarization are changed significantly by protein specific electrophysiological remodeling (either homogeneous or
heterogeneous). Our simulations illustrate and provide new insights into this. Furthermore, enhanced fibrosis in failing
hearts, as well as reduced intercellular coupling, combine to increase electrophysiological gradients and reduce electrical
propagation. In combination these changes set the stage for arrhythmias.This work was partially supported by (i) the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica" from the Ministerio de Economia y Competitividad of Spain (grant number TIN2012-37546-C03-01) and the European Commission (European Regional Development Funds - ERDF - FEDER), (ii) the Direccion General de Politica Cientifica de la Generalitat Valenciana (grant number GV/2013/119), and (iii) Programa Prometeo (PROMETEO/2012/030) de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Gómez García, JF.; Cardona, K.; Romero Pérez, L.; Ferrero De Loma-Osorio, JM.; Trénor Gomis, BA. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study. PLoS ONE. 9(9). https://doi.org/10.1371/journal.pone.0106602S9
Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes
The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to I(Na-L)significantly increases intracellular Na+, [Na]; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]; which may further enhance I(Na-L)due to calmodulindependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O'Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2(+)]; homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (<= 1.5 mM) in [Na] even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na] when I(Na-L)was increased. Based on our simulations, the major short-term effect of markedly augmenting I(Na-L)is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, Ica-L. Furthermore, this action potential prolongation does not contribute to [Na]; increase.This work was supported by (i) the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica" from the Ministerio de Economia y Competitividad of Spain (grant number TIN2012-37546-C03-01) and the European Commission (European Regional Development Funds-ERDF-FEDER), (ii) by the Direccion General de Politica Cientifica de la Generalitat Valenciana (grant number GV/2013/119), and by (iii), Programa Prometeo (PROMETEO/2016/088) de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.K Cardona; Trénor Gomis, BA.; W Giles (2016). Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes. PLoS ONE. 11(11). https://doi.org/10.1371/journal.pone.0167060S111
Telethonin
Background:Telethonin (TCAP) is a Z-disk protein that maintains cytoskeletal integrity and various signaling pathways in cardiomyocytes. TCAP is shown to modulate α-subunit of the human cardiac sodium channel (hNav 1.5) by direct interactions. Several TCAP variants are found in cardiomyopathies. We sought to investigate whether TCAP variants are associated with arrhythmia syndromes.Methods:Mutational analyses for TCAP were performed in 303 Japanese patients with Brugada syndrome, arrhythmogenic right ventricular cardiomyopathy, and J-wave pattern ECG. Using patch-clamp techniques, electrophysiological characteristics of hNav 1.5 were studied in HEK-293 cells stably expressing hNav 1.5 and transiently transfected with wild-type (WT) or variant TCAP.Results:We identified two TCAP variants, c.145G>A:p.E49K and c.458G>A:p.R153H, in four individuals. p.E49K was found in two patients with ARVC or BrS. p.R153H was found in two patients with BrS or J-wave pattern ECG. No patient had variant hNav 1.5. Patch-clamp experiments demonstrated that peak sodium currents were significantly reduced in cells expressing p.R153H and p.E49K compared with WT-TCAP (66%, p.R153H; 72%, p.E49K). Voltage dependency of peak IV curve was rightward-shifted by 5 mV in cells expressing p.E49K compared with WT-TCAP. Voltage dependency of activation was not leftward-shifted by p.R153H, while voltage dependency of steady-state inactivation was leftward-shifted by p.E49K.Conclusions:We found two TCAP variants in the patients with BrS, J-wave pattern ECG, and ARVC that can cause loss-of-function of the hNav 1.5 in heterologous expression systems. Our observation suggests that these variants might impair INa and be associated with the patients\u27 electrophysiological phenotypes. Further studies linking our experimental data to clinical phenotypes are warranted
- …