21 research outputs found

    Present day greenhouse gases could cause more frequent and longer Dust Bowl heatwaves

    Get PDF
    Substantial warming occurred across North America, Europe and the Arctic over the early twentieth century1, including an increase in global drought2, that was partially forced by rising greenhouse gases (GHGs)3. The period included the 1930s Dust Bowl drought4,5,6,7 across North America’s Great Plains that caused widespread crop failures4,8, large dust storms9 and considerable out-migration10. This coincided with the central United States experiencing its hottest summers of the twentieth century11,12 in 1934 and 1936, with over 40 heatwave days and maximum temperatures surpassing 44 °C at some locations13,14. Here we use a large-ensemble regional modelling framework to show that GHG increases caused slightly enhanced heatwave activity over the eastern United States during 1934 and 1936. Instead of asking how a present-day heatwave would behave in a world without climate warming, we ask how these 1930s heatwaves would behave with present-day GHGs. Heatwave activity in similarly rare events would be much larger under today’s atmospheric GHG forcing and the return period of a 1-in-100-year heatwave summer (as observed in 1936) would be reduced to about 1-in-40 years. A key driver of the increasing heatwave activity and intensity is reduced evaporative cooling and increased sensible heating during dry springs and summers

    The Open Anchoring Quest Dataset: Anchored Estimates from 96 Studies on Anchoring Effects

    Get PDF
    People’s estimates are biased toward previously considered numbers (anchoring). We have aggregated all available data from anchoring studies that included at least two anchors into one large dataset. Data were standardized to comprise one estimate per row, coded according to a wide range of variables, and are available for download and analyses online (https://metaanalyses.shinyapps.io/OpAQ/). Because the dataset includes both original and meta-data it allows for fine-grained analyses (e.g., correlations of estimates for different tasks) but also for meta-analyses (e.g., effect sizes for anchoring effects)

    Learning from the 2018 heatwave in the context of climate change: are high-temperature extremes important for adaptation in Scotland?

    No full text
    To understand whether high temperatures and temperature extremes are important for climate change adaptation in Scotland, we place the 2018 heatwave in the context of past, present, and future climate, and provide a rapid but comprehensive impact analysis. The observed hottest day, 5-day, and 30-day period of 2018 and the 5-day period with the warmest nights had return periods of 5-15 years for 1950-2018. The warmest night and the maximum 30-day average nighttime temperature were more unusual with return periods of >30 years. Anthropogenic climate change since 1850 has made all these high-temperature extremes more likely. Higher risk ratios are found for experiments from the CMIP6-generation global climate model HadGEM3-GA6 compared to those from the very-large ensemble system weather@home. Between them, the best estimates of the risk ratios for daytime extremes range between 1.2-2.4, 1.2-2.3, and 1.4-4.0 for the 1-, 5-, and 30-day averages. For the corresponding nighttime extremes, the values are higher and the ranges wider (1.5->50, 1.5-5.5, and 1.6->50). The short-period nighttime extremes were more likely in 2018 than in 2017, suggesting a contribution from year-to-year climate variability to the risk enhancement of extreme temperatures due to anthropogenic effects. Climate projections suggest further substantial increases in the likelihood of 2018 temperatures between now and 2050, and that towards the end of the century every summer might be as hot as 2018. Major negative impacts occurred, especially on rural sectors, while transport and water infrastructure alleviated most impacts by implementing costly special measures. Overall, Scotland could cope with the impacts of the 2018 heatwave. However, given the likelihood increase of high-temperature extremes, uncertainty about consequences of even higher temperatures and/or repeated heatwaves, and substantial costs of preventing negative impacts, we conclude that despite its cool climate, high-temperature extremes are important to consider for climate change adaptation in Scotland

    The potential of novel African isolates of Phthorimaea operculella granulovirus for the control of Tuta absoluta.

    No full text
    Phthorimaea operculella granulovirus (PhopGV) is infectious for larvae of different Gelechiidae insect species, including Tuta absoluta and Phthorimaea operculella. As these are major economic pests in North and sub‐Saharan Africa as well as in the Mediterranean area, the development of locally suitable biocontrol agents is essential. We have studied five isolates of PhopGV from Tunisia (Tns16, Tu1.11 and Tu2.11), Kenya (Ken13) and Yemen (Ym14) for their biological activity and the sequence polymorphism of their granulin and ecdysteroid UDP‐glucosyltransferase (egt) genes and allocated the isolates to two different egt types. Infection experiments with neonate larvae of T. absoluta and P. operculella demonstrated their pathogenicity to both host species. The isolate PhopGV Tu1.11 was the most virulent one for T. absoluta but had a relatively low infectivity to two P. operculella populations originating from Italy and Tunisia
    corecore