21 research outputs found

    Factors influencing the initial establishment of salt marsh vegetation on engineered sea wall terraces in south east England

    Get PDF
    Sea walls provide vital flood protection for lowland coastal property. We investigated the integrity of a cost-effective method of repairing sea defences, which has potential to create habitat for coastal and salt marsh flora. Experimental stone-gabion and clay-filled terraces were installed as a soft engineered approach to repair damaged sea walls in estuarine embayments in south east England. Changes in the surface heights of sediment and vascular plant colonisation were monitored over a 22 month period. Seven of the 12 terraces were colonised, by 12 species of plant, reaching a maximum of 85% cover. The main drivers of plant colonisation were sediment stability, elevation, exposure and sediment shear strength. Terraces with least change in the surface height of sediments were favourable for plant colonisation. Ordination (Canonical Correspondence Analysis) showed 72% variation in plant distribution explained by elevation (37%), exposure (30%), terrace length and sediment shear strength (5%). Elevation was the most influential variable; recruitment increased as terrace height approached the height of existing marsh (r2 = 0.43). This cost-effective approach has the potential to provide protection to sea walls and create additional habitat for wildlife. Key considerations for the improvement of terrace design and construction are discussed

    Patterns in microphytobenthic primary productivity: Species-specific variation in migratory rhythms and photosynthetic efficiency in mixed-species biofilms.

    No full text
    The importance of temporal changes in the vertical distribution of microphytobenthic algae on the overall functioning of intertidal biofilms were investigated with low-temperature scanning electron microscopy and high-resolution single-cell fluorescence imaging of photosystem II efficiency (estimated by the fluorescence parameter F'q/F'm) in intact cores maintained in tidal mesocosms. Early morning biofilms consisted of smaller naviculoid and nitzschioid taxa or euglenoid species. By midday, Gyrosigma balticum and Pleurosigma angulatum were dominant. Some taxa (e.g., Plagiotropis vitrea) disappeared from surface layers after midday. Species composition continued to change toward the end of the photoperiod, with G. balticum dominating in diatom-rich biofilms. In Euglena-rich biofilms, initial dense surface films of euglenids became progressively dominated by smaller diatoms. F'q/F'm (measured at a photosynthetically active photon flux density (PPFD) of 22

    Impact of a simulated oil spill on benthic phototrophs and nitrogen-fixing bacteria in mudflat mesocosms

    No full text
    International audienceCoastal and estuarine ecosystems are highly susceptible to crude oil pollution. Therefore, in order to examine the resilience of benthic phototrophs that are pivotal to coastal ecosystem functioning, we simulated an oil spill in tidal mesocosms consisting of intact sediment cores from a mudflat at the mouth of the Colne Estuary, UK. At day 21, fluorescence imaging revealed a bloom of cyanobacteria on the surface of oiled sediment cores, and the upper 1.5cm thick sediment had 7.2 times more cyanobacterial and 1.7 times more diatom rRNA sequences when treated with oil. Photosystem II operating efficiency (Fq′/Fm′) was significantly reduced in oiled sediments at day 7, implying that the initial diatom-dominated community was negatively affected by oil, but this was no longer apparent by day 21. Oil addition significantly reduced numbers of the key deposit feeders, and the decreased grazing pressure is likely to be a major factor in the increased abundance of both diatoms and cyanobacteria. By day 5 concentrations of dissolved inorganic nitrogen were significantly lower in oiled mesocosms, likely resulting in the observed increase in nifH-containing, and therefore potentially dinitrogen-fixing, cyanobacteria. Thus, indirect effects of oil, rather than direct inhibition, are primarily responsible for altering the microphytobenthos. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd
    corecore