10 research outputs found

    The Values of Tangible User Interfaces: How to discover, assess and evaluate them?

    Get PDF
    Since the introduction of Tangible User Interfaces, in the beginning of the 90s, a generation grew up interacting with computers. At the same time the context of computing changed dramatically: from a device used almost exclusively by specialists, it evolved to a general device that plays a dominant role in our societies. But where does this leave TUI? In many respects, the idea of tangibility plays a marginal role in Human Computer Interaction. It makes sense to re-evaluate the intrinsic values of TUI design. This paper proposes to research the appropriate metrics to do so

    Smart material interfaces: A vision

    Get PDF
    In this paper, we introduce a vision called Smart Material Interfaces (SMIs), which takes advantage of the latest generation of engineered materials that has a special property defined “smart”. They are capable of changing their physical properties, such as shape, size and color, and can be controlled by using certain stimuli (light, potential difference, temperature and so on). We describe SMIs in relation to Tangible User Interfaces (TUIs) to convey the usefulness and a better understanding of SMIs

    Augmenting Reality with Projected Interactive Displays

    No full text
    Abstract. This paper examines a steerable projection system, the everywhere displays projector (ED-projector), which transforms surfaces into interactive displays. In an ED-projector, the display image is directed onto a surface by a rotating mirror. Oblique projection distortion is removed by a computer-graphics reverse-distortion process and user interaction (pointing and clicking) is achieved by detecting hand movements with a video camera. The ED-projector is a generic input/output device to be used to provide computer access from different locations of an environment or to overlay interactive graphics on any surface of a space, providing a simpler, more comfortable, and more social solution for augmented reality than goggles. We are investigating applications of ED-projectors that provide computer access in public spaces, facilitate navigation in buildings, localize resources in a physical space, bring computational resources to different areas of an environment, and facilitate the reconfiguration of the workplace.

    Expected, sensed, and desired: A framework for designing sensing-based interaction

    Get PDF
    Movements of interfaces can be analyzed in terms of whether they are expected, sensed, and desired. Expected movements are those that users naturally perform; sensed are those that can be measured by a computer; and desired movements are those that are required by a given application. We show how a systematic comparison of expected, sensed, and desired movements, especially with regard to how they do not precisely overlap, can reveal potential problems with an interface and also inspire new features. We describe how this approach has been applied to the design of three interfaces: pointing flashlights at walls and posters in order to play sounds; the Augurscope II, a mobile augmented reality interface for outdoors; and the Drift Table, an item of furniture that uses load sensing to control the display of aerial photographs. We propose that this approach can help to build a bridge between the analytic and inspirational approaches to design and can help designers meet the challenges raised by a diversification of sensing technologies and interface forms, increased mobility, and an emerging focus on technologies for everyday life
    corecore