229 research outputs found

    Neutrino physics with multi-ton scale liquid xenon detectors

    Get PDF
    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2-30 keV, where the sensitivity to solar pp and 7^7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ∼\sim2×\times10−48^{-48} cm2^2 and WIMP masses around 50 GeV⋅\cdotc−2^{-2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ∼\sim6 GeV⋅\cdotc−2^{-2} to cross sections above ∼\sim4×\times10−45^{-45}cm2^2. DARWIN could reach a competitive half-life sensitivity of 5.6×\times1026^{26} y to the neutrinoless double beta decay of 136^{136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.Comment: 17 pages, 4 figure

    Fluorescence decay-time constants in organic liquid scintillators

    Full text link
    The fluorescence decay-time constants have been measured for several scintillator mixtures based on phenyl-o-xylylethane (PXE) and linear alkylbenzene (LAB) solvents. The resulting values are of relevance for the physics performance of the proposed large-volume liquid scintillator detector LENA (Low Energy Neutrino Astronomy). In particular, the impact of the measured values to the search for proton decay via p -> K+ antineutrino is evaluated in this work.Comment: 7 pages, 5 figure

    Spectroscopy of electron-induced fluorescence in organic liquid scintillators

    Full text link
    Emission spectra of several organic liquid-scintillator mixtures which are relevant for the proposed LENA detector have been measured by exciting the medium with electrons of ~10keV. The results are compared with spectra resulting from ultraviolet light excitation. Good agreement between spectra measured by both methods has been found.Comment: 6 pages, 7 figure

    Spectroscopy of electron-induced fluorescence in organic liquidscintillators

    Get PDF
    Emission spectra of several organic liquid-scintillator mixtures which are relevant for the proposed LENA detector have been measured by exciting the medium with electrons of ∼10keV. The results are compared with spectra resulting from ultraviolet light excitation. Good agreement between spectra measured by both methods has been foun

    Qualification Tests of the R11410-21 Photomultiplier Tubes for the XENON1T Detector

    Full text link
    The Hamamatsu R11410-21 photomultiplier tube is the photodetector of choice for the XENON1T dual-phase time projection chamber. The device has been optimized for a very low intrinsic radioactivity, a high quantum efficiency and a high sensitivity to single photon detection. A total of 248 tubes are currently operated in XENON1T, selected out of 321 tested units. In this article the procedures implemented to evaluate the large number of tubes prior to their installation in XENON1T are described. The parameter distributions for all tested tubes are shown, with an emphasis on those selected for XENON1T, of which the impact on the detector performance is discussed. All photomultipliers have been tested in a nitrogen atmosphere at cryogenic temperatures, with a subset of the tubes being tested in gaseous and liquid xenon, simulating their operating conditions in the dark matter detector. The performance and evaluation of the tubes in the different environments is reported and the criteria for rejection of PMTs are outlined and quantified.Comment: 24 pages, 16 figure

    Gator: a low-background counting facility at the Gran Sasso Underground Laboratory

    Full text link
    A low-background germanium spectrometer has been installed and is being operated in an ultra-low background shield (the Gator facility) at the Gran Sasso underground laboratory in Italy (LNGS). With an integrated rate of ~0.16 events/min in the energy range between 100-2700 keV, the background is comparable to those of the world's most sensitive germanium detectors. After a detailed description of the facility, its background sources as well as the calibration and efficiency measurements are introduced. Two independent analysis methods are described and compared using examples from selected sample measurements. The Gator facility is used to screen materials for XENON, GERDA, and in the context of next-generation astroparticle physics facilities such as DARWIN.Comment: 14 pages, 6 figures, published versio

    Optical Scattering Lengths in Large Liquid-Scintillator Neutrino Detectors

    Full text link
    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents PXE, LAB, and Dodecane which are under discussion for next-generation experiments like SNO+, Hanohano, or LENA. Results comprise the wavelength range from 415 to 440nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.Comment: 9 pages, 3 figures, accepted for publication by Rev. Scient. Instr

    Detection potential for the diffuse supernova neutrino background in the large liquid-scintillator detector LENA

    Full text link
    The large-volume liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) will provide high-grade background discrimination and enable the detection of diffuse supernova neutrinos (DSN) in an almost background-free energy window from ~10 to 25 MeV. Within ten years of exposure, it will be possible to derive significant constraints on both core-collapse supernova models and the supernova rate in the near universe up to redshifts z<2.Comment: 11 pages, 8 figures. accepted for publication in Phys. Rev. D. accepted for publication in Phys. Rev.

    Low energy neutrino astronomy with the large liquid scintillation detector LENA

    Get PDF
    The detection of low energy neutrinos in a large scintillation detector may provide further important information on astrophysical processes as supernova physics, solar physics and elementary particle physics as well as geophysics. In this contribution, a new project for Low Energy Neutrino Astronomy (LENA) consisting of a 50kt scintillation detector is presented.Comment: Proccedings of the International School of Nuclear Physics, Neutrinos in Cosmology, in Astro, Particle and Nuclear Physics, Erice (SICILY) 16 - 24 Sept. 200

    Qualification Tests of the R11410-21 Photomultiplier Tubes for the XENON1T Detector

    No full text
    The Hamamatsu R11410-21 photomultiplier tube is the photodetector of choice for the XENON1T dual-phase time projection chamber. The device has been optimized for a very low intrinsic radioactivity, a high quantum efficiency and a high sensitivity to single photon detection. A total of 248 tubes are currently operated in XENON1T, selected out of 321 tested units. In this article the procedures implemented to evaluate the large number of tubes prior to their installation in XENON1T are described. The parameter distributions for all tested tubes are shown, with an emphasis on those selected for XENON1T, of which the impact on the detector performance is discussed. All photomultipliers have been tested in a nitrogen atmosphere at cryogenic temperatures, with a subset of the tubes being tested in gaseous and liquid xenon, simulating their operating conditions in the dark matter detector. The performance and evaluation of the tubes in the different environments is reported and the criteria for rejection of PMTs are outlined and quantified
    • …
    corecore