154 research outputs found

    Robust H2/H∞-state estimation for systems with error variance constraints: the continuous-time case

    Get PDF
    Copyright [1999] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.The paper is concerned with the state estimator design problem for perturbed linear continuous-time systems with H∞ norm and variance constraints. The perturbation is assumed to be time-invariant and norm-bounded and enters into both the state and measurement matrices. The problem we address is to design a linear state estimator such that, for all admissible measurable perturbations, the variance of the estimation error of each state is not more than the individual prespecified value, and the transfer function from disturbances to error state outputs satisfies the prespecified H∞ norm upper bound constraint, simultaneously. Existence conditions of the desired estimators are derived in terms of Riccati-type matrix inequalities, and the analytical expression of these estimators is also presented. A numerical example is provided to show the directness and effectiveness of the proposed design approac

    Model reduction based on regional pole and covariance equivalentrealizations

    Get PDF
    Copyright [1999] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper a novel model reduction problem is studied for linear continuous-time time-invariant stochastic systems. The purpose of this problem is to design the reduced-order model so that it has the same dominant pole region and steady state output covariance as those of the original full-order model. The resulting reduced-order model can approximate the corresponding original full-order model in two important aspects, i.e., transient and steady state performances. Necessary and sufficient conditions for the existence of desired reduced-order models are established, and an explicit expression for these reduced order model is also presented. An illustrative example is used to demonstrate the effectiveness of the proposed design metho

    Robust H2/H∞-state estimation for discrete-time systems with error variance constraints

    Get PDF
    Copyright [1997] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper studies the problem of an H∞-norm and variance-constrained state estimator design for uncertain linear discrete-time systems. The system under consideration is subjected to time-invariant norm-bounded parameter uncertainties in both the state and measurement matrices. The problem addressed is the design of a gain-scheduled linear state estimator such that, for all admissible measurable uncertainties, the variance of the estimation error of each state is not more than the individual prespecified value, and the transfer function from disturbances to error state outputs satisfies the prespecified H∞-norm upper bound constraint, simultaneously. The conditions for the existence of desired estimators are obtained in terms of matrix inequalities, and the explicit expression of these estimators is also derived. A numerical example is provided to demonstrate various aspects of theoretical results

    Multiobjective control of a four-link flexible manipulator: A robust H∞ approach

    Get PDF
    Copyright [2002] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper presents an approach to robust H∞ control of a real multilink flexible manipulator via regional pole assignment. We first show that the manipulator system can be approximated by a linear continuous uncertain model with exogenous disturbance input. The uncertainty occurring in an operating space is assumed to be norm-bounded and enter into both the system and control matrices. Then, a multiobjective simultaneous realization problem is studied. The purpose of this problem is to design a state feedback controller such that, for all admissible parameter uncertainties, the closed-loop system simultaneously satisfies both the prespecified H∞ norm constraint on the transfer function from the disturbance input to the system output and the prespecified circular pole constraint on the closed-loop system matrix. An algebraic parameterized approach is developed to characterize the existence conditions as well as the analytical expression of the desired controllers. Third, by comparing with the traditional linear quadratic regulator control method in the sense of robustness and tracking precision, we provide both the simulation and experimental results to demonstrate the effectiveness and advantages of the proposed approach

    On designing observers for time-delay systems with nonlinear disturbances

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2002 Taylor & Francis LtdIn this paper, the observer design problem is studied for a class of time-delay nonlinear systems. The system under consideration is subject to delayed state and non-linear disturbances. The time-delay is allowed to be time-varying, and the non-linearities are assumed to satisfy global Lipschitz conditions. The problem addressed is the design of state observers such that, for the admissible time-delay as well as non-linear disturbances, the dynamics of the observation error is globally exponentially stable. An effective algebraic matrix inequality approach is developed to solve the non-linear observer design problem. Specifically, some conditions for the existence of the desired observers are derived, and an explicit expression of desired observers is given in terms of some free parameters. A simulation example is included to illustrate the practical applicability of the proposed theory.The work of Z. Wang was supported in part by the University of Kaiserslautern of Germany and the Alexander von Humboldt Foundation of Germany

    Characterization of an ester-based core-multishell (CMS) nanocarrier for the topical application at the oral mucosa

    Get PDF
    Objectives Topical drug administration is commonly applied to control oral inflammation. However, it requires sufficient drug adherence and a high degree of bioavailability. Here, we tested the hypothesis whether an ester-based core-multishell (CMS) nanocarrier is a suitable nontoxic drug-delivery system that penetrates efficiently to oral mucosal tissues, and thereby, increase the bioavailability of topically applied drugs. Material and methods To evaluate adhesion and penetration, the fluorescence-labeled CMS 10-E-15-350 nanocarrier was applied to ex vivo porcine masticatory and lining mucosa in a Franz cell diffusion assay and to an in vitro 3D model. In gingival epithelial cells, potential cytotoxicity and proliferative effects of the nanocarrier were determined by MTT and sulphorhodamine B assays, respectively. Transepithelial electrical resistance (TEER) was measured in presence and absence of CMS 10-E-15-350 using an Endohm-12 chamber and a volt-ohm-meter. Cellular nanocarrier uptake was analyzed by laser scanning microscopy. Inflammatory responses were determined by monitoring pro-inflammatory cytokines using real-time PCR and ELISA. Results CMS nanocarrier adhered to mucosal tissues within 5 min in an in vitro model and in ex vivo porcine tissues. The CMS nanocarrier exhibited no cytotoxic effects and induced no inflammatory responses. Furthermore, the physical barrier expressed by the TEER remained unaffected by the nanocarrier. Conclusions CMS 10-E-15-350 adhered to the oral mucosa and adhesion increased over time which is a prerequisite for an efficient drug release. Since TEER is unaffected, CMS nanocarrier may enter the oral mucosa transcellularly. Clinical relevance Nanocarrier technology is a novel and innovative approach for efficient topical drug delivery at the oral mucosa
    corecore