62 research outputs found

    Protease domain and transmembrane domain of the type VII secretion mycosin protease determine system-specific functioning in mycobacteria

    Get PDF
    Mycobacteria use type VII secretion (T7S) systems to secrete proteins across their highly hydrophobic diderm cell envelope. Pathogenic mycobacteria, such as Mycobacterium tuberculosis and Mycobacterium marinum, have up to five of these systems, named ESX-1 to -5. Most of these systems contain a set of five conserved membrane components, of which the four Ecc proteins form the core membrane-embedded secretion complex. The fifth conserved membrane protein, the mycosin protease (MycP), is not part of the core complex, but is essential for secretion, as it stabilizes this membrane complex. Here, we investigated which MycP domain is required for this stabilization by producing hybrid constructs between MycP1 and MycP5 in M. marinum and analyzed their effect on ESX-1 and ESX-5 secretion. We found that both the protease and transmembrane (TM) domain are required for the ESX system-specific function of mycosins. In addition, we observed that the TM domain strongly affects MycP protein levels. We also show that the extended loops 1 and 2 in the protease domain are probably primarily involved in MycP stability, whereas loop 3 and the MycP5-specific loop 5 are dispensable. The atypical propeptide, or N-terminal extension, is required only for MycP stability. Finally, we show that the protease domain of MycPP1, encoded by the esx-P1 locus on the pRAW plasmid, is functionally redundant to the protease domain of MycP5 These results provide the first insight into the regions of mycosins involved in the interaction with and the stabilization of their respective ESX complexes

    Modification of a PE/PPE substrate pair reroutes an Esx substrate pair from the mycobacterial ESX-1 type VII secretion system to the ESX-5 system

    Get PDF
    Bacterial type VII secretion systems secrete a wide range of extracellular proteins that play important roles in bacterial viability and in interactions of pathogenic mycobacteria with their hosts. Mycobacterial type VII secretion systems consist of five subtypes, ESX-1-5, and have four substrate classes, namely, Esx, PE, PPE, and Esp proteins. At least some of these substrates are secreted as heterodimers. Each ESX system mediates the secretion of a specific set of Esx, PE, and PPE proteins, raising the question of how these substrates are recognized in a system-specific fashion. For the PE/PPE heterodimers, it has been shown that they interact with their cognate EspG chaperone and that this chaperone determines the designated secretion pathway. However, both structural and pulldown analyses have suggested that EspG cannot interact with the Esx proteins. Therefore, the determining factor for system specificity of the Esx proteins remains unknown. Here, we investigated the secretion specificity of the ESX-1 substrate pair EsxB_1/EsxA_1 in Mycobacterium marinum Although this substrate pair was hardly secreted when homologously expressed, it was secreted when co-expressed together with the PE35/PPE68_1 pair, indicating that this pair could stimulate secretion of the EsxB_1/EsxA_1 pair. Surprisingly, co-expression of EsxB_1/EsxA_1 with a modified PE35/PPE68_1 version that carried the EspG5 chaperone-binding domain, previously shown to redirect this substrate pair to the ESX-5 system, also resulted in redirection and co-secretion of the Esx pair via ESX-5. Our results suggest a secretion model in which PE35/PPE68_1 determines the system-specific secretion of EsxB_1/EsxA_1

    Comparative Genomic and Transcriptomic Analyses of Mycobacterium kansasii Subtypes Provide New Insights Into Their Pathogenicity and Taxonomy

    Get PDF
    Mycobacterium kansasii is an important opportunistic pathogen of humans and has a close phylogenetic relationship with Mycobacterium tuberculosis. Seven subtypes (I–VII) have been identified using molecular biology approaches, of which subtype I is the most frequent causative agent of human disease. To investigate the genotypes and pathogenic components of M. kansasii, we sequenced and compared the complete base-perfect genomes of different M. kansasii subtypes. Our findings support the proposition that M. kansasii “subtypes” I-VI, whose assemblies are currently available, should be considered as different species. Furthermore, we identified the exclusive presence of the espACD operon in M. kansasii subtype I, and we confirmed its role in the pathogenicity of M. kansasii in a cell infection model. The espACD operon is exclusively present in mycobacterial species that induce phagosomal rupture in host phagocytes and is known to be a major determinant of ESX1-mediated virulence in pathogenic mycobacteria. Comparative transcriptome analysis of the M. kansasii I-V strains identified genes potentially associated with virulence. Using a comparative genomics approach, we designed primers for PCR genotyping of M. kansasii subtypes I-V and tested their efficacy using clinically relevant strains of M. kansasii.Work in AP's laboratory was supported by the KAUST faculty baseline fund (BAS/1/1020-01- 01

    Integrated transcriptomic and proteomic analysis of pathogenic mycobacteria and their esx-1 mutants reveal secretion-dependent regulation of ESX-1 substrates and WhiB6 as a transcriptional regulator

    Get PDF
    The mycobacterial type VII secretion system ESX-1 is responsible for the secretion of a number of proteins that play important roles during host infection. The regulation of the expression of secreted proteins is often essential to establish successful infection. Using transcriptome sequencing, we found that the abrogation of ESX-1 function in Mycobacterium marinum leads to a pronounced increase in gene expression levels of the espA operon during the infection of macrophages. In addition, the disruption of ESX-1-mediated protein secretion also leads to a specific down-regulation of the ESX-1 substrates, but not of the structural components of this system, during growth in culture medium. This effect is observed in both M. marinum and M. tuberculosis. We established that down-regulation of ESX-1 substrates is the result of a regulatory process that is influenced by the putative transcriptional regulator whib6, which is located adjacent to the esx-1 locus. In addition, the overexpression of the ESX-1-associated PE35/PPE68 protein pair resulted in a significantly increased secretion of the ESX-1 substrate EsxA, demonstrating a functional link between these proteins. Taken together, these data show that WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates and that ESX-1 substrates are regulated independently from the structural components, both during infection and as a result of active secretion

    Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations.

    Get PDF
    Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protective efficacy and a lack of lasting memory responses. One factor contributing to this variability may be the diversity of the BCG strains that are used around the world, in part from genomic changes accumulated during vaccine production and their resulting differences in gene expression. We have compared the genomes and transcriptomes of a global collection of fourteen of the most widely used BCG strains at single base-pair resolution. We have also used quantitative proteomics to identify key differences in expression of proteins across five representative BCG strains of the four tandem duplication (DU) groups. We provide a comprehensive map of single nucleotide polymorphisms (SNPs), copy number variation and insertions and deletions (indels) across fourteen BCG strains. Genome-wide SNP characterization allowed the construction of a new and robust phylogenic genealogy of BCG strains. Transcriptional and proteomic profiling revealed a metabolic remodeling in BCG strains that may be reflected by altered immunogenicity and possibly vaccine efficacy. Together, these integrated-omic data represent the most comprehensive catalogue of genetic variation across a global collection of BCG strains

    Mycobacterium marinum MMAR_2380, a predicted transmembrane acyltransferase, is essential for the presence of the mannose cap on lipoarabinomannan

    Get PDF
    Lipoarabinomannan (LAM) is a major glycolipid in the mycobacterial cell envelope. LAM consists of a mannosylphosphatidylinositol (MPI) anchor, a mannan core and a branched arabinan domain. The termini of the arabinan branches can become substituted with one to three α(1→2)-linked mannosyl residues, the mannose cap, producing ManLAM. ManLAM has been associated with a range of different immunomodulatory properties of Mycobacterium tuberculosis during infection of the host. In some of these effects, the presence of the mannose cap on ManLAM appears to be crucial for its activity. So far, in the biosynthesis of the mannose cap on ManLAM, two enzymes have been reported to be involved: a mannosyltransferase that adds the first mannosyl residue of the mannose caps to the arabinan domain of LAM, and another mannosyltransferase that elongates the mannose cap up to three mannosyl residues. Here, we report that a third gene is involved, MMAR_2380, which is the Mycobacterium marinum orthologue of Rv1565c. MMAR_2380 encodes a predicted transmembrane acyltransferase. In M. marinum ΔMMAR_2380, the LAM arabinan domain is still intact, but the mutant LAM lacks the mannose cap. Additional effects of mutation of MMAR_2380 on LAM were observed: a higher degree of branching of both the arabinan domain and the mannan core, and a decreased incorporation of [1,2-14C]acetate into the acyl chains in mutant LAM as compared with the wild-type form. This latter effect was also observed for related lipoglycans, i.e. lipomannan (LM) and phosphatidylinositol mannosides (PIMs). Furthermore, the mutant strain showed increased aggregation in liquid cultures as compared with the wild-type strain. All phenotypic traits of M. marinum ΔMMAR_2380, the deficiency in the mannose cap on LAM and changes at the cell surface, could be reversed by complementing the mutant strain with MMAR_2380. Strikingly, membrane preparations of the mutant strain still showed enzymic activity for the arabinan mannose-capping mannosyltransferase similar to that of the wild-type strain. Although the exact function of MMAR_2380 remains unknown, we show that the protein is essential for the presence of a mannose cap on LAM

    Species‐specific secretion of ESX‐5 type VII substrates is determined by the linker 2 of EccC 5

    No full text
    Mycobacteria use type VII secretion systems (T7SSs) to translocate a wide range of proteins across their diderm cell envelope. These systems, also called ESX systems, are crucial for the viability and/or virulence of mycobacterial pathogens, including Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. We have previously shown that the M. tuberculosis ESX-5 system is unable to fully complement secretion in an M. marinum esx-5 mutant, suggesting species specificity in secretion. In this study, we elaborated on this observation and established that the membrane ATPase EccC5 , possessing four (putative) nucleotide-binding domains (NBDs), is responsible for this. By creating M. marinum-M. tuberculosis EccC5 chimeras, we observed both in M. marinum and in M. tuberculosis that secretion specificity of PE_PGRS proteins depends on the presence of the cognate linker 2 domain of EccC5 . This region connects NBD1 and NBD2 of EccC5 and is responsible for keeping NBD1 in an inhibited state. Notably, the ESX-5 substrate EsxN, predicted to bind to NBD3 on EccC5 , showed a distinct secretion profile. These results indicate that linker 2 is involved in species-specific substrate recognition and might therefore be an additional substrate recognition site of EccC5

    Identification of a substrate domain that determines system specificity in mycobacterial type VII secretion systems

    No full text
    Type VII secretion (T7S) systems are specialized machineries used by mycobacterial pathogens to transport important virulence factors across their highly hydrophobic cell envelope. There are up to five mycobacterial T7S systems, named ESX-1 to ESX-5, at least three of which specifically secrete a different subset of substrates. The T7S substrates or substrate complexes are defined by the general secretion motif YxxxD/E. However this motif does not determine system specificity. Here, we show that the substrate domain recognized by the EspG chaperone is the determinant factor for this specificity. We first show that the introduction of point mutations into the EspG 1 -binding domain of the ESX-1 substrate pair PE35/PPE68-1 affects their secretion. Subsequently, we demonstrate that replacing this domain by the EspG 5 -binding domain of the ESX-5 substrate PPE18 resulted in EspG 5 dependence and exclusive rerouting to the ESX-5 system. This rerouting of PE35/PPE68-1 to the ESX-5 system had a negative effect on the secretion of endogenous ESX-5 substrates

    Species-specific secretion of ESX-5 type VII substrates is determined by the linker 2 of EccC5

    No full text
    Mycobacteria use type VII secretion systems (T7SSs) to translocate a wide range of proteins across their diderm cell envelope. These systems, also called ESX systems, are crucial for the viability and/or virulence of mycobacterial pathogens, including Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. We have previously shown that the M. tuberculosis ESX-5 system is unable to fully complement secretion in an M. marinum esx-5 mutant, suggesting species specificity in secretion. In this study, we elaborated on this observation and established that the membrane ATPase EccC5 , possessing four (putative) nucleotide-binding domains (NBDs), is responsible for this. By creating M. marinum-M. tuberculosis EccC5 chimeras, we observed both in M. marinum and in M. tuberculosis that secretion specificity of PE_PGRS proteins depends on the presence of the cognate linker 2 domain of EccC5 . This region connects NBD1 and NBD2 of EccC5 and is responsible for keeping NBD1 in an inhibited state. Notably, the ESX-5 substrate EsxN, predicted to bind to NBD3 on EccC5 , showed a distinct secretion profile. These results indicate that linker 2 is involved in species-specific substrate recognition and might therefore be an additional substrate recognition site of EccC5

    Structure and dynamics of a mycobacterial type VII secretion system

    No full text
    Mycobacterium tuberculosis is the cause of one of the most important infectious diseases in humans, which leads to 1.4 million deaths every year1. Specialized protein transport systems—known as type VII secretion systems (T7SSs)—are central to the virulence of this pathogen, and are also crucial for nutrient and metabolite transport across the mycobacterial cell envelope2,3. Here we present the structure of an intact T7SS inner-membrane complex of M. tuberculosis. We show how the 2.32-MDa ESX-5 assembly, which contains 165 transmembrane helices, is restructured and stabilized as a trimer of dimers by the MycP5_5 protease. A trimer of MycP5_5 caps a central periplasmic dome-like chamber that is formed by three EccB5_5 dimers, with the proteolytic sites of MycP5_5 facing towards the cavity. This chamber suggests a central secretion and processing conduit. Complexes without MycP5_5 show disruption of the EccB5 periplasmic assembly and increased flexibility, which highlights the importance of MycP5_5 for complex integrity. Beneath the EccB5_5–MycP5_5 chamber, dimers of the EccC5 ATPase assemble into three bundles of four transmembrane helices each, which together seal the potential central secretion channel. Individual cytoplasmic EccC5 domains adopt two distinctive conformations that probably reflect different secretion states. Our work suggests a previously undescribed mechanism of protein transport and provides a structural scaffold to aid in the development of drugs against this major human pathogen
    corecore