54 research outputs found

    Change in use of hand antiseptic due to educational intervention

    Get PDF

    Planck Sunyaev-Zel'dovich Cluster Mass Calibration using Hyper Suprime-Cam Weak Lensing

    Full text link
    Using \sim140 deg2^2 Subaru Hyper Suprime-Cam (HSC) survey data, we stack the weak lensing (WL) signal around five Planck clusters found within the footprint. This yields a 15σ\sigma detection of the mean Planck cluster mass density profile. The five Planck clusters span a relatively wide mass range, MWL,500c=(230)×1014M/hM_{\rm WL,500c} = (2-30)\times10^{14}\,M_\odot/h with a mean mass of MWL,500c=(4.15±0.61)×1014M/hM_{\rm WL,500c} = (4.15\pm0.61)\times10^{14}\,M_\odot/h. The ratio of the stacked Planck Sunyaev-Zel'dovich (SZ) mass to the stacked WL mass is MSZ/MWL=1b=0.80±0.14 \langle M_{\rm SZ}\rangle/\langle M_{\rm WL}\rangle = 1-b = 0.80\pm0.14. This mass bias is consistent with previous WL mass calibrations of Planck clusters within the errors. We discuss the implications of our findings for the calibration of SZ cluster counts and the much discussed tension between Planck SZ cluster counts and Planck Λ\LambdaCDM cosmology.Comment: 12 pages, 2 tables, 7 figures, accepted to PASJ special issu

    Source Selection for Cluster Weak Lensing Measurements in the Hyper Suprime-Cam Survey

    Full text link
    We present optimized source galaxy selection schemes for measuring cluster weak lensing (WL) mass profiles unaffected by cluster member dilution from the Subaru Hyper Suprime-Cam Strategic Survey Program (HSC-SSP). The ongoing HSC-SSP survey will uncover thousands of galaxy clusters to z1.5z\lesssim1.5. In deriving cluster masses via WL, a critical source of systematics is contamination and dilution of the lensing signal by cluster {members, and by foreground galaxies whose photometric redshifts are biased}. Using the first-year CAMIRA catalog of \sim900 clusters with richness larger than 20 found in \sim140 deg2^2 of HSC-SSP data, we devise and compare several source selection methods, including selection in color-color space (CC-cut), and selection of robust photometric redshifts by applying constraints on their cumulative probability distribution function (PDF; P-cut). We examine the dependence of the contamination on the chosen limits adopted for each method. Using the proper limits, these methods give mass profiles with minimal dilution in agreement with one another. We find that not adopting either the CC-cut or P-cut methods results in an underestimation of the total cluster mass (13±4%13\pm4\%) and the concentration of the profile (24±11%24\pm11\%). The level of cluster contamination can reach as high as 10%\sim10\% at R0.24R\approx 0.24 Mpc/hh for low-z clusters without cuts, while employing either the P-cut or CC-cut results in cluster contamination consistent with zero to within the 0.5% uncertainties. Our robust methods yield a 60σ\sim60\sigma detection of the stacked CAMIRA surface mass density profile, with a mean mass of M200c=(1.67±0.05(stat))×1014M/hM_\mathrm{200c} = (1.67\pm0.05({\rm {stat}}))\times 10^{14}\,M_\odot/h.Comment: 19 pages, 4 tables, 12 figures, accepted to PASJ special issu

    Active gas features in three HSC-SSP CAMIRA clusters revealed by high angular resolution analysis of MUSTANG-2 SZE and XXL X-ray observations

    Get PDF
    International audienceWe present results from simultaneous modelling of high angular resolution GBT/MUSTANG-2 90 GHz Sunyaev–Zel’dovich effect (SZE) measurements and XMM-XXL X-ray images of three rich galaxy clusters selected from the HSC-SSP Survey. The combination of high angular resolution SZE and X-ray imaging enables a spatially resolved multicomponent analysis, which is crucial to understand complex distributions of cluster gas properties. The targeted clusters have similar optical richnesses and redshifts, but exhibit different dynamical states in their member galaxy distributions: a single-peaked cluster, a double-peaked cluster, and a cluster belonging to a supercluster. A large-scale residual pattern in both regular Compton-parameter y and X-ray surface brightness distributions is found in the single-peaked cluster, indicating a sloshing mode. The double-peaked cluster shows an X-ray remnant cool core between two SZE peaks associated with galaxy concentrations. The temperatures of the two peaks reach ∼20–30 keV in contrast to the cool core component of ∼2 keV, indicating a violent merger. The main SZE signal for the supercluster is elongated along a direction perpendicular to the major axis of the X-ray core, suggesting a minor merger before core passage. The and y distributions are thus perturbed at some level, regardless of the optical properties. We find that the integrated Compton y parameter and the temperature for the major merger are boosted from those expected by the weak-lensing mass and those for the other two clusters show no significant deviations, which is consistent with predictions of numerical simulations

    First Data Release of the Hyper Suprime-Cam Subaru Strategic Program

    Full text link
    The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope and it started in March 2014. This paper presents the first public data release of HSC-SSP. This release includes data taken in the first 1.7 years of observations (61.5 nights) and each of the Wide, Deep, and UltraDeep layers covers about 108, 26, and 4 square degrees down to depths of i~26.4, ~26.5, and ~27.0 mag, respectively (5sigma for point sources). All the layers are observed in five broad bands (grizy), and the Deep and UltraDeep layers are observed in narrow bands as well. We achieve an impressive image quality of 0.6 arcsec in the i-band in the Wide layer. We show that we achieve 1-2 per cent PSF photometry (rms) both internally and externally (against Pan-STARRS1), and ~10 mas and 40 mas internal and external astrometric accuracy, respectively. Both the calibrated images and catalogs are made available to the community through dedicated user interfaces and database servers. In addition to the pipeline products, we also provide value-added products such as photometric redshifts and a collection of public spectroscopic redshifts. Detailed descriptions of all the data can be found online. The data release website is https://hsc-release.mtk.nao.ac.jp/.Comment: 34 pages, 20 figures, 7 tables, moderate revision, accepted for publication in PAS

    The history of human populations in the Japanese Archipelago inferred from genome-wide SNP data with a special reference to the Ainu and the Ryukyuan populations

    Get PDF
    The Japanese Archipelago stretches over 4000 km from north to south, and is the homeland of the three human populations; the Ainu, the Mainland Japanese and the Ryukyuan. The archeological evidence of human residence on this Archipelago goes back to 430 000 years, and various migration routes and root populations have been proposed. Here, we determined close to one million single-nucleotide polymorphisms (SNPs) for the Ainu and the Ryukyuan, and compared these with existing data sets. This is the first report of these genome-wide SNP data. Major findings are: (1) Recent admixture with the Mainland Japanese was observed for more than one third of the Ainu individuals from principal component analysis and frappe analyses; (2) The Ainu population seems to have experienced admixture with another population, and a combination of two types of admixtures is the unique characteristics of this population; (3) The Ainu and the Ryukyuan are tightly clustered with 100% bootstrap probability followed by the Mainland Japanese in the phylogenetic trees of East Eurasian populations. These results clearly support the dual structure model on the Japanese Archipelago populations, though the origins of the Jomon and the Yayoi people still remain to be solved

    Indian Monsoonal Variations During the Past 80 Kyr Recorded in NGHP-02 Hole 19B, Western Bay of Bengal: Implications From Chemical and Mineral Properties

    Get PDF
    金沢大学理工研究域地球社会基盤学系Detailed reconstruction of Indian summer monsoons is necessary to better understand the late Quaternary climate history of the Bay of Bengal and Indian peninsula. We established a chronostratigraphy for a sediment core from Hole 19B in the western Bay of Bengal, extending to approximately 80 kyr BP and examined major and trace element compositions and clay mineral components of the sediments. Higher δ 18 O values, lower TiO 2 contents, and weaker weathering in the sediment source area during marine isotope stages (MIS) 2 and 4 compared to MIS 1, 3, and 5 are explained by increased Indian summer monsoonal precipitation and river discharge around the western Bay of Bengal. Clay mineral and chemical components indicate a felsic sediment source, suggesting the Precambrian gneissic complex of the eastern Indian peninsula as the dominant sediment source at this site since 80 kyr. Trace element ratios (Cr/Th, Th/Sc, Th/Co, La/Cr, and Eu/Eu*) indicate increased sediment contributions from mafic rocks during MIS 2 and 4. We interpret these results as reflecting the changing influences of the eastern and western branches of the Indian summer monsoon and a greater decrease in rainfall in the eastern and northeastern parts of the Indian peninsula than in the western part during MIS 2 and 4. © 2018. American Geophysical Union. All Rights Reserved
    corecore