253 research outputs found
Nanoscale NEXAFS for Probing TiO2 B Nanoribbons
TiO2 nanostructures exist in different crystallographic phases including brookite, anatase, rutile, and TiO2 amp; 8722;B bronze . Among these, due to its open channel like crystal structure which can enhance ion mobility, the TiO2 amp; 8722;B phase has been reported as an optimal anode material for lithium ion batteries, particularly in the form of nanowires [1]. In view of device applications, where different phases may coexist and TiO2 amp; 8722;B particles may transform to the thermodynamically stable anatase phase, it is important to identify and understand the structural and electronic differences between these two phases. Here we have studied the electronic structure of TiO2 nanoribbons in TiO2 amp; 8722;B and anatase phases using polarization dependent near edge X ray absorption fine structure spectroscopy NEXAFS in the transmission X ray microscope TXM and density functional theory DFT [2,3]. NEXAFS at both the O K edge and the Ti L edge is very sensitive to the local bonding environment in TiO2 based materials and thus provides diagnostic information about the crystal structures and oxidation states. We report the observation of strong linear dichroism in the O K edge spectra of single TiO2 amp; 8722;B nanoribbons. Using DFT calculations we show that the dichroism is a consequence of the directional Ti amp; 8722;O bonding in the monoclinic crystal structur
Development and Field Validation of an Environmental DNA (eDNA) Assay for Invasive Clams of the Genus Corbicula
Early detection is imperative for successful control or eradication of invasive species, but many organisms are difficult to detect at the low abundances characteristic of recently introduced populations. Environmental DNA (eDNA) has emerged as a promising invasive species surveillance tool for freshwaters, owing to its high sensitivity to detect aquatic species even when scarce. We report here a new eDNA assay for the globally invasive Asian clam Corbicula fluminea (Müller, 1774), with field validation in large lakes of western North America. We identified a candidate primer pair for the Cytochrome c oxidase subunit 1 (COI) gene for C. fluminea. We tested it for specificity via qPCR assay against genomic DNA of the target species C. fluminea, and synthetic DNA gBlocks for other non-target species within and outside of the genus Corbicula. Our best identified primer amplifies a 208-bp fragment for C. fluminea and several closely related species within the genus, but was specific for these non-native Asian clams relative to native mollusks of western North America. We further evaluated this assay in application to eDNA water samples for the detection of C. fluminea from four lakes in California and Nevada, United States, where the species is known to occur (including Lake Tahoe) relative to seven lakes where it has never been observed. Our assay successfully detected C. fluminea in all four lakes with historic records for this species, and did not detect C. fluminea from the seven lakes without known populations. Further, the distribution of eDNA detections within Lake Tahoe generally matched the known, restricted distribution of C. fluminea in this large lake. We conclude from this successful field validation that our eDNA assay for C. fluminea will be useful for researchers and managers seeking to detect new introductions and potentially monitor population trends of this major freshwater invader and other closely related members of its genus
Aerosol-Assisted CVD-Grown PdO Nanoparticle-Decorated Tungsten Oxide Nanoneedles Extremely Sensitive and Selective to Hydrogen
We report for the first time the successful synthesis of palladium (Pd) nanoparticle (NP)-decorated tungsten trioxide (WO3) nanoneedles (NNs) via a two-step aerosol-assisted chemical vapor deposition approach. Morphological, structural, and elemental composition analysis revealed that a Pd(acac)2 precursor was very suitable to decorate WO3 NNs with uniform and well-dispersed PdO NPs. Gas-sensing results revealed that decoration with PdO NPs led to an ultrasensitive and selective hydrogen (H2) gas sensor (sensor response peaks at 1670 at 500 ppm of H2) with low operating temperature (150 °C). The response of decorated NNs is 755 times higher than that of bare WO3 NNs. Additionally, at a temperature near that of the ambient temperature (50 °C), the response of this sensor toward the same concentration of H2 was 23, which is higher than that of some promising sensors reported in the literature. Finally, humidity measurements showed that PdO/WO3 sensors displayed low-cross-sensitivity toward water vapor, compared to bare WO3 sensors. The addition of PdO NPs helps to minimize the effect of ambient humidity on the sensor response
Tunability of the elastocaloric response in main-chain liquid crystalline elastomers
Materials exhibiting a large caloric effect could lead to the development of a new generation of heat-management technologies that will have better energy efficiency and be potentially more environmentally friendly. The focus of caloric materials investigations has shifted recently from solid-state materials towards soft materials, such as liquid crystals and liquid crystalline elastomers. It has been shown recently that a large electrocaloric effect exceeding 6 K can be observed in smectic liquid crystals. Here, we report on a significant elastocaloric response observed by direct elastocaloric measurements in main-chain liquid crystal elastomers. It is demonstrated that the character of the nematic to paranematic/isotropic transition can be tuned from the supercritical regime towards the first-order regime, by decreasing the density of crosslinkers. In the latter case, the latent heat additionally enhances the elastocaloric response. Our results indicate that a significant elastocaloric response is present in main-chain liquid crystalline elastomers, driven by stress fields much smaller than in solid elastocaloric materials. Therefore, elastocaloric soft materials can potentially play a significant role as active cooling/heating elements in the development of new heat-management devices
Molecular nitrogen in N doped TiO2 nanoribbons
The nitrogen doping of TiO2 nanoribbons during the thermal transformation of hydrogen titanate nanoribbons HTiNRs between 400 and 650 C in a dynamic ammonia atmosphere was investigated using X ray photoelectron spectroscopy XPS , transmission X ray microscopy combined with near edge X ray absorption fine structure spectroscopy NEXAFS TXM , X ray diffraction XRD and electron paramagnetic resonance measurements EPR . Comprehensive structural characterizations have revealed that for a calcination temperature of 400 C, the HTiNRs transform into pure monoclinic TiO2 b phase TiO2 B whereas at higher calcination temperatures 580 and 650 C a mixture of TiO2 B and anatase is obtained. XPS and EPR results clearly reveal the nitrogen doping of TiO2 nanoribbons and that, depending on the calcination temperature, nitrogen atoms occupy interstitial and substitutional sites. Moreover, in samples calcined at 580 and 650 C the presence of N2 like species in the HTiNRs was detected by NEXAFS TXM. These species are trapped in the HTiNRs structure. EPR measurements upon light illumination have disclosed the generation of photoexcited states which implies that nitrogen has an important effect on the electronic structure of N doped TiO
Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices
A new method of synthesising nanoparticle-functionalised nanostructured materials via Aerosol Assisted Chemical Vapour Deposition (AACVD) has been developed. Co-deposition of Au nanoparticles with WO3 nanoneedles has been used to deposit a sensing layer directly onto gas sensor substrates providing devices with a six-fold increase in response to low concentrations of a test analyte (ethanol)
Discovering a taste for the unusual: exceptional models for preference mining
Exceptional preferences mining (EPM) is a crossover between two subfields of data mining: local pattern mining and preference learning. EPM can be seen as a local pattern mining task that finds subsets of observations where some preference relations between labels significantly deviate from the norm. It is a variant of subgroup discovery, with rankings of labels as the target concept. We employ several quality measures that highlight subgroups featuring exceptional preferences, where the focus of what constitutes exceptional' varies with the quality measure: two measures look for exceptional overall ranking behavior, one measure indicates whether a particular label stands out from the rest, and a fourth measure highlights subgroups with unusual pairwise label ranking behavior. We explore a few datasets and compare with existing techniques. The results confirm that the new task EPM can deliver interesting knowledge.This research has received funding from the ECSEL Joint Undertaking, the framework programme for research and innovation Horizon 2020 (2014-2020) under Grant Agreement Number 662189-MANTIS-2014-1
Synthesis and Cathodoluminescence of Undoped and Cr^3^+-Doped Sodium Titanate Nanotubes and Nanoribbons
We report on the synthesis of Cr^3^+-doped sodium titanate nanotubes and nanoribbons by a hydrothermal method. The presence of dopant ions in these nanostructures was confirmed by high angle annular dark field scanning transmission electron microscopy in combination with electron energy loss spectroscopy measurements. Luminescence properties of undoped and Cr^3^+-doped sodium titanate nanotubes and nanoribbons were investigated by cathodoluminescence in the scanning electron microscope. A broad visible band in the range 1.7−2.7 eV is observed in these nanostructures. Such emission is similar to that observed in bulk anatase TiO_2 and titanate powders, and is related to TiO_6 octahedra, which is a common feature to all the samples investigated. Near-infrared emission, sometimes attributed to Ti^3^+ interstitials, is observed in bulk powders but is absent in the titanate nanotubes and nanoribbons. Incorporation of Cr^3^+ between the titanate layers of the nanostructures is revealed by the characteristic intraionic emission line at 1.791 eV. Sodium titanate nanoribbons appear to be an effective host for optically active Cr^3^+ ions, as compared with nanotubes or bulk powder
Synthesis, structure and magnetic properties ofβ-MnO2nanorods
We present synthesis, structure and magnetic properties of structurally well-ordered single-crystalline β-MnO2nanorods of 50–100 nm diameter and several µm length. Thorough structural characterization shows that the basic β-MnO2material is covered by a thin surface layer (∼2.5 nm) of α-Mn2O3phase with a reduced Mn valence that adds its own magnetic signal to the total magnetization of the β-MnO2nanorods. The relatively complicated temperature-dependent magnetism of the nanorods can be explained in terms of a superposition of bulk magnetic properties of spatially segregated β-MnO2and α-Mn2O3constituent phases and the soft ferromagnetism of the thin interface layer between these two phases
Academic student satisfaction and perceived performance in the e-learning environment during the COVID-19 pandemic: Evidence across ten countries
The outbreak of the COVID-19 pandemic has dramatically shaped higher education and seen the distinct rise of e-learning as a compulsory element of the modern educational landscape. Accordingly, this study highlights the factors which have influenced how students perceive their academic performance during this emergency changeover to e-learning. The empirical analysis is performed on a sample of 10,092 higher education students from 10 countries across 4 continents during the pandemic’s first wave through an online survey. A structural equation model revealed the quality of e-learning was mainly derived from service quality, the teacher’s active role in the process of online education, and the overall system quality, while the students’ digital competencies and online interactions with their colleagues and teachers were considered to be slightly less important factors. The impact of e-learning quality on the students’ performance was strongly mediated by their satisfaction with e-learning. In general, the model gave quite consistent results across countries, gender, study fields, and levels of study. The findings provide a basis for policy recommendations to support decision-makers incorporate e-learning issues in the current and any new similar circumstances.info:eu-repo/semantics/publishedVersio
- …