18 research outputs found

    In vitro evaluation method for screening of candidate prebiotic foods

    Get PDF
    AbstractThe aim of this work was to develop a simple and rapid in vitro evaluation method for screening and discovery of uncharacterised and untapped prebiotic foods. Using a NMR-based metabolomic approach coupled with multivariate statistical analysis, the metabolic profiles generated by intestinal microbiota after in vitro incubation with feces were examined. The viscous substances of Japanese bunching onion (JBOVS) were identified as one of the candidate prebiotic foods by this in vitro screening method. The JBOVS were primarily composed of sugar components, especially fructose-based carbohydrates. Our results suggested that ingestion of JBOVS contributed to lactate and acetate production by the intestinal microbiota, and were accompanied by an increase in the Lactobacillus murinus and Bacteroidetes sp. populations in the intestine and fluctuation of the host-microbial co-metabolic process. Therefore, our approach should be useful as a rapid and simple screening tool for potential prebiotic foods

    Contribution of Strigolactones to the Inhibition of Tiller Bud Outgrowth under Phosphate Deficiency in Rice

    Get PDF
    Strigolactones (SLs) or SL-derived metabolite(s) have recently been shown to act as endogenous inhibitors of axillary bud outgrowth. SLs released from roots induce hyphal branching of arbuscular mycorrhizal (AM) fungi that facilitate the uptake of inorganic nutrients, such as phosphate (Pi) and nitrate, by the host plants. Previous studies have shown that SL levels in root exudates are highly elevated by Pi starvation, which might contribute to successful symbiosis with AM fungi in the rhizosphere. However, how endogenous SL levels elevated by Pi starvation contribute to its hormonal action has been unknown. Here, we show that tiller bud outgrowth in wild-type rice seedlings is inhibited, while root 2′-epi-5-deoxystrigol (epi-5DS) levels are elevated, in response to decreasing Pi concentrations in the media. However, the suppression of tiller bud outgrowth under Pi deficiency does not occur in the SL-deficient and -insensitive mutants. We also show that the responsiveness to exogenous SL is slightly increased by Pi deficiency. When Pi-starved seedlings are transferred to Pi-sufficient media, tiller bud outgrowth is induced following a decrease in root epi-5DS levels. Taken together, these results suggest that elevated SL levels by Pi starvation contribute to the inhibition of tiller bud outgrowth in rice seedlings. We speculate that SL plays a dual role in the adaptation to Pi deficiency; one as a rhizosphere signal to maximize AM fungi symbiosis for improved Pi acquisition and the other as an endogenous hormone or its biosynthetic precursor to optimize shoot branching for efficient Pi utilization

    Effects of Triazole Derivatives on Strigolactone Levels and Growth Retardation in Rice

    Get PDF
    We previously discovered a lead compound for strigolactone (SL) biosynthesis inhibitors, TIS13 (2,2-dimethyl-7-phenoxy-4-(1H-1,2,4-triazol-1-yl)heptan-3-ol). Here, we carried out a structure-activity relationship study of TIS13 to discover more potent and specific SL biosynthesis inhibitor because TIS13 has a severe side effect at high concentrations, including retardation of the growth of rice seedlings. TIS108, a new TIS13 derivative, was found to be a more specific SL biosynthesis inhibitor than TIS13. Treatment of rice seedlings with TIS108 reduced SL levels in both roots and root exudates in a concentration-dependent manner and did not reduce plant height. In addition, root exudates of TIS108-treated rice seedlings stimulated Striga germination less than those of control plants. These results suggest that TIS108 has a potential to be applied in the control of root parasitic weeds germination

    A comparison of the effects caused by TIS13 and TIS108 treatment.

    No full text
    <p>(A) Chemical structures of strigolactone biosynthesis inhibitors. (B) <i>epi</i>-5DS levels in root exudates of chemical-treated rice seedlings determined by LC-MS/MS. The data are means ± SD of three samples. (C) The length of 2nd leaf sheath in 10 µM chemical-treated rice. The data are means ± SD of six samples.</p
    corecore