549 research outputs found
The Effect of the Hall Term on the Nonlinear Evolution of the Magnetorotational Instability: I. Local Axisymmetric Simulations
The effect of the Hall term on the evolution of the magnetorotational
instability (MRI) in weakly ionized accretion disks is investigated using local
axisymmetric simulations. First, we show that the Hall term has important
effects on the MRI when the temperature and density in the disk is below a few
thousand K and between 10^13 and 10^18 cm^{-3} respectively. Such conditions
can occur in the quiescent phase of dwarf nova disks, or in the inner part
(inside 10 - 100 AU) of protoplanetary disks. When the Hall term is important,
the properties of the MRI are dependent on the direction of the magnetic field
with respect to the angular velocity vector \Omega. If the disk is threaded by
a uniform vertical field oriented in the same sense as \Omega, the axisymmetric
evolution of the MRI is an exponentially growing two-channel flow without
saturation. When the field is oppositely directed to \Omega, however, small
scale fluctuations prevent the nonlinear growth of the channel flow and the MRI
evolves into MHD turbulence. These results are anticipated from the
characteristics of the linear dispersion relation. In axisymmetry on a field
with zero-net flux, the evolution of the MRI is independent of the size of the
Hall term relative to the inductive term. The evolution in this case is
determined mostly by the effect of ohmic dissipation.Comment: 31 pages, 3 tables, 12 figures, accepted for publication in ApJ,
postscript version also available from
http://www.astro.umd.edu/~sano/publications
Gas pressure sintering of Beta-Sialon with Z=3
An experiment conducted on beta-sialon in atmospheric pressure, using a temperature of 2000 C and 4 MPa nitrogen atmosphere, is described. Thermal decomposition was inhibited by the increase of the nitrogen gas pressure
TMC-1C: an accreting starless core
We have mapped the starless core TMC-1C in a variety of molecular lines with
the IRAM 30m telescope. High density tracers show clear signs of
self-absorption and sub-sonic infall asymmetries are present in N2H+ (1-0) and
DCO+ (2-1) lines. The inward velocity profile in N2H+ (1-0) is extended over a
region of about 7,000 AU in radius around the dust continuum peak, which is the
most extended ``infalling'' region observed in a starless core with this
tracer. The kinetic temperature (~12 K) measured from C17O and C18O suggests
that their emission comes from a shell outside the colder interior traced by
the mm continuum dust. The C18O (2-1) excitation temperature drops from 12 K to
~10 K away from the center. This is consistent with a volume density drop of
the gas traced by the C18O lines, from ~4x10^4 cm^-3 towards the dust peak to
~6x10^3 cm^-3 at a projected distance from the dust peak of 80" (or 11,000 AU).
The column density implied by the gas and dust show similar N2H+ and CO
depletion factors (f_D < 6). This can be explained with a simple scenario in
which: (i) the TMC-1C core is embedded in a relatively dense environment (H2
~10^4 cm^-3), where CO is mostly in the gas phase and the N2H+ abundance had
time to reach equilibrium values; (ii) the surrounding material (rich in CO and
N2H+) is accreting onto the dense core nucleus; (iii) TMC-1C is older than
3x10^5 yr, to account for the observed abundance of N2H+ across the core
(~10^-10 w.r.t. H2); and (iv) the core nucleus is either much younger (~10^4
yr) or ``undepleted'' material from the surrounding envelope has fallen towards
it in the past 10,000 yr.Comment: 29 pages, including 5 tables and 15 figure
The Origin of Jovian Planets in Protostellar Disks: The Role of Dead Zones
The final masses of Jovian planets are attained when the tidal torques that
they exert on their surrounding protostellar disks are sufficient to open gaps
in the face of disk viscosity, thereby shutting off any further accretion. In
sufficiently well-ionized disks, the predominant form of disk viscosity
originates from the Magneto-Rotational Instability (MRI) that drives
hydromagnetic disk turbulence. In the region of sufficiently low ionization
rate -- the so-called dead zone -- turbulence is damped and we show that lower
mass planets will be formed. We considered three ionization sources (X-rays,
cosmic rays, and radioactive elements) and determined the size of a dead zone
for the total ionization rate by using a radiative, hydrostatic equilibrium
disk model developed by Chiang et al. (2001). We studied a range of surface
mass density (Sigma_{0}=10^3 - 10^5 g cm^{-2}) and X-ray energy (kT_{x}=1 - 10
keV). We also compared the ionization rate of such a disk by X-rays with cosmic
rays and find that the latter dominate X-rays in ionizing protostellar disks
unless the X-ray energy is very high (5 - 10 keV). Among our major conclusions
are that for typical conditions, dead zones encompass a region extending out to
several AU -- the region in which terrestrial planets are found in our solar
system. Our results suggest that the division between low and high mass planets
in exosolar planetary systems is a consequence of the presence of a dead zone
in their natal protoplanetary disks. We also find that the extent of a dead
zone is mainly dependent on the disk's surface mass density. Our results
provide further support for the idea that Jovian planets in exosolar systems
must have migrated substantially inwards from their points of origin.Comment: 28 pages, 10 figures, accepted by Ap
Atomic Diagnostics of X-ray Irradiated Protoplanetary Disks
We study atomic line diagnostics of the inner regions of protoplanetary disks
with our model of X-ray irradiated disk atmospheres which was previously used
to predict observable levels of the NeII and NeIII fine-structure transitions
at 12.81 and 15.55mum. We extend the X-ray ionization theory to sulfur and
calculate the fraction of sulfur in S, S+, S2+ and sulfur molecules. For the
D'Alessio generic T Tauri star disk, we find that the SI fine-structure line at
25.55mum is below the detection level of the Spitzer Infrared Spectrometer
(IRS), in large part due to X-ray ionization of atomic S at the top of the
atmosphere and to its incorporation into molecules close to the mid-plane. We
predict that observable fluxes of the SII 6718/6732AA forbidden transitions are
produced in the upper atmosphere at somewhat shallower depths and smaller radii
than the neon fine-structure lines. This and other forbidden line transitions,
such as the OI 6300/6363AA and the CI 9826/9852AA lines, serve as complementary
diagnostics of X-ray irradiated disk atmospheres. We have also analyzed the
potential role of the low-excitation fine-structure lines of CI, CII, and OI,
which should be observable by SOFIA and Herschel.Comment: Accepted by Ap
Gas-grain models for interstellar anion chemistry
Long-chain hydrocarbon anions CnH- (n=4, 6, 8) have recently been found to be
abundant in a variety of interstellar clouds. In order to explain their large
abundances in the denser (prestellar/protostellar) environments, new chemical
models are constructed that include gas-grain interactions. Models including
accretion of gas-phase species onto dust grains and cosmic-ray-induced
desorption of atoms are able to reproduce the observed anion-to-neutral ratios,
as well as the absolute abundances of anionic and neutral carbon chains, with a
reasonable degree of accuracy. Due to their destructive effects, the depletion
of oxygen atoms onto dust results in substantially greater polyyne and anion
abundances in high-density gas (with n_{H_2} >~ 10^5 cm^{-3}). The large
abundances of carbon-chain-bearing species observed in the envelopes of
protostars such as L1527 can thus be explained without the need for warm
carbon-chain chemistry. The C6H- anion-to-neutral ratio is found to be most
sensitive to the atomic O and H abundances and the electron density. Therefore,
as a core evolves, falling atomic abundances and rising electron densities are
found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray
desorption of atoms in high-density models delays freeze-out, which results in
a more temporally-stable anion-to-neutral ratio, in better agreement with
observations. Our models include reactions between oxygen atoms and
carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O and
HC7O, the abundances of which depend on the assumed branching ratios for
associative electron detachment
The chemistry of multiply deuterated molecules in protoplanetary disks. I. The outer disk
We present new models of the deuterium chemistry in protoplanetary disks,
including, for the first time, multiply deuterated species. We use these models
to explore whether observations in combination with models can give us clues as
to which desorption processes occur in disks. We find, in common with other
authors, that photodesorption can allow strongly bound molecules such as HDO to
exist in the gas phase in a layer above the midplane. Models including this
process give the best agreement with the observations. In the midplane, cosmic
ray heating can desorb weakly bound molecules such as CO and N. We find the
observations suggest that N is gaseous in this region, but that CO must be
retained on the grains to account for the observed DCO/HCO. This could
be achieved by CO having a higher binding energy than N (as may be the case
when these molecules are accreted onto water ice) or by a smaller cosmic ray
desorption rate for CO than assumed here, as suggested by recent theoretical
work.
For gaseous molecules the calculated deuteration can be greatly changed by
chemical processing in the disk from the input molecular cloud values. On the
grains singly deuterated species tend to retain the D/H ratio set in the
molecular cloud, whereas multiply deuterated species are more affected by the
disk chemistry. Consequently the D/H ratios observed in comets may be partly
set in the parent cloud and partly in the disk, depending on the molecule.Comment: Accepted for publication in ApJ. 48 pages, 8 figure
A Spherical Model for "Starless" Cores of Magnetic Molecular Clouds and Dynamical Effects of Dust Grains
In the standard picture of isolated star formation, dense ``starless'' cores
are formed out of magnetic molecular clouds due to ambipolar diffusion. Under
the simplest spherical geometry, I demonstrate that ``starless'' cores formed
this way naturally exhibit a large scale inward motion, whose size and speed
are comparable to those detected recently by Taffala et al. and Williams et al.
in ``starless'' core L1544. My model clouds have a relatively low mass (of
order 10 ) and low field strength (of order 10 G) to begin with.
They evolve into a density profile with a central plateau surrounded by a
power-law envelope, as found previously. The density in the envelope decreases
with radius more steeply than those found by Mouschovias and collaborators for
the more strongly magnetized, disk-like clouds.
At high enough densities, dust grains become dynamically important by greatly
enhancing the coupling between magnetic field and the neutral cloud matter. The
trapping of magnetic flux associated with the enhanced coupling leads, in the
spherical geometry, to a rapid assemblage of mass by the central protostar,
which exacerbates the so-called ``luminosity problem'' in star formation.Comment: 27 pages, 4 figures, accepted by Ap
Magnetic fields in protoplanetary disks
Magnetic fields likely play a key role in the dynamics and evolution of
protoplanetary discs. They have the potential to efficiently transport angular
momentum by MHD turbulence or via the magnetocentrifugal acceleration of
outflows from the disk surface, and magnetically-driven mixing has implications
for disk chemistry and evolution of the grain population. However, the weak
ionisation of protoplanetary discs means that magnetic fields may not be able
to effectively couple to the matter. I present calculations of the ionisation
equilibrium and magnetic diffusivity as a function of height from the disk
midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling
by soaking up electrons and ions from the gas phase and reducing the
conductivity of the gas by many orders of magnitude. However, once grains have
grown to a few microns in size their effect starts to wane and magnetic fields
can begin to couple to the gas even at the disk midplane. Because ions are
generally decoupled from the magnetic field by neutral collisions while
electrons are not, the Hall effect tends to dominate the diffusion of the
magnetic field when it is able to partially couple to the gas.
For a standard population of 0.1 micron grains the active surface layers have
a combined column of about 2 g/cm^2 at 1 AU; by the time grains have aggregated
to 3 microns the active surface density is 80 g/cm^2. In the absence of grains,
x-rays maintain magnetic coupling to 10% of the disk material at 1 AU (150
g/cm^2). At 5 AU the entire disk thickness becomes active once grains have
aggregated to 1 micron in size.Comment: 11 pages, 11 figs, aastex.cls. Accepted for publication in
Astrophysics & Space Science. v3 corrects bibliograph
- …