85 research outputs found

    Bimanual Passive Movement: Functional Activation and Inter-Regional Coupling

    Get PDF
    The aim of this study was to investigate intra-regional activation and inter-regional connectivity during passive movement. During fMRI, a mechanic device was used to move the subject's index and middle fingers. We assessed four movement conditions (unimanual left/right, bimanual symmetric/asymmetric), plus Rest. A conventional intra-regional analysis identified the passive stimulation network, including motor cortex, primary and secondary somatosensory cortex, plus the cerebellum. The posterior (sensory) part of the sensory–motor activation around the central sulcus showed a significant modulation according to the symmetry of the bimanual movement, with greater activation for asymmetric compared to symmetric movements. A second set of fMRI analyses assessed condition-dependent changes of coupling between sensory–motor regions around the superior central sulcus and the rest of the brain. These analyses showed a high inter-regional covariation within the entire network activated by passive movement. However, the specific experimental conditions modulated these patterns of connectivity. Highest coupling was observed during the Rest condition, and the coupling between homologous sensory–motor regions around the left and right central sulcus was higher in bimanual than unimanual conditions. These findings demonstrate that passive movement can affect the connectivity within the sensory–motor network. We conclude that implicit detection of asymmetry during bimanual movement relies on associative somatosensory region in post-central areas, and that passive stimulation reduces the functional connectivity within the passive movement network. Our findings open the possibility to combine passive movement and inter-regional connectivity as a tool to investigate the functionality of the sensory–motor system in patients with very poor mobility

    The antimicrobial photodynamic therapy in the treatment of peri-implantitis

    Get PDF
    The aim of this study is to demonstrate the effectiveness of addition of the antimicrobial photodynamic therapy to the conventional approach in the treatment of peri-implantitis. Materials and Methods. Forty patients were randomly assigned to test or control groups. Patients were assessed at baseline and at six (T1), twelve (T2), and twenty-four (T3) weeks recording plaque index (PlI), probing pocket depth (PPD), and bleeding on probing (BOP); control group received conventional periodontal therapy, while test group received photodynamic therapy in addition to it. Result. Test group showed a 70% reduction in the plaque index values and a 60% reduction in PD values compared to the baseline. BOP and suppuration were not detectable. Control group showed a significative reduction in plaque index and PD. Discussion. Laser therapy has some advantages in comparison to traditional therapy, with faster and greater healing of the wound. Conclusion. Test group showed after 24 weeks a better value in terms of PPD, BOP, and PlI, with an average pocket depth value of 2 mm, if compared with control group (3 mm).Our results suggest that antimicrobial photodynamic therapy with diode laser and phenothiazine chloride represents a reliable adjunctive treatment to conventional therapy. Photodynamic therapy should, however, be considered a coadjuvant in the treatment of peri-implantitis associated with mechanical (scaling) and surgical (grafts) treatments

    Economic issues provokes hazardous landing decision-making by enhancing the activity of "emotional" neural pathways

    Get PDF
    The analysis of aeronautical accidents highlights the fact that some airline pilots demonstrate a trend to land whereas the approach is not well stabilized. This behavior seems to be the consequence of various factors, including financial issues. Our hypothesis is that financial constraints modulate the brain circuitry of emotion and reward, in particular via the interactions between two prefrontal structures: the dorsolateral prefrontal cortex(DLPFC), main center of the executive functions (EFs), high level cognitive abilities, and the ventromedial prefrontal cortex (VMPFC), structure linked with the limbic system, major substratum of emotional processes. In our experiment, participants performed a simplified task of landing in which the level of uncertainty and the financial incentive were manipulated. A preliminary behavioral experiment (n = 12) was conducted. A similar second experiment using functional magnetic resonance imaging (fMRI) is in progress and a case study only is reported here. The behavioral data showed that the participants made more risky decision to land in the financial incentive condition in comparison to the neutral condition, where no financial incentive was delivered. This was particularly true when the uncertainty was high. The functional neuroimaging results showed that the reasoning performed in neutral condition resulted in enhanced activity in DLPFC. On the contrary, under the influence of the financial incentive, VMPFC activity was increased. These results showed the effectiveness of the financial incentive to bias decision-making toward a more risky and less rational behavior from a safety point of view. Functional neuroimaging data showed a shift from cold to hot reasoning in presence of the financial incentive, suggesting that pilot erroneous trend to land could be explained by a temporary perturbation of the decision-making process due to the negative emotional consequences associated with the go-around

    Cerebellar Atrophy in Congenital Fibrosis of the Extraocular Muscles Type 1

    Get PDF
    We described a family with a molecularly confirmed form of CFEOM1 and a late-onset cerebellar syndrome. Brain MRI showed vermis atrophy in two older family members, who also manifested gait impairment, whereas both neurological examination and neuroimaging findings were normal in a younger relative who harbored the same mutation

    Neuroimaging and Neurolaw: Drawing the Future of Aging

    Get PDF
    Human brain-aging is a complex, multidimensional phenomenon. Knowledge of the numerous aspects that revolve around it is therefore essential if not only the medical issues, but also the social, psychological, and legal issues related to this phenomenon are to be managed correctly. In the coming decades, it will be necessary to find solutions to the management of the progressive aging of the population so as to increase the number of individuals that achieve successful aging. The aim of this article is to provide a current overview of the physiopathology of brain aging and of the role and perspectives of neuroimaging in this context. The progressive development of neuroimaging has opened new perspectives in clinical and basic research and it has modified the concept of brain aging. Neuroimaging will play an increasingly important role in the definition of the individual's brain aging in every phase of the physiological and pathological process. However, when the process involved in age-related brain cognitive diseases is being investigated, factors that might affect this process on a clinical and behavioral level (genetic susceptibility, risks factors, endocrine changes) cannot be ignored but must, on the contrary, be integrated into a neuroimaging evaluation to ensure a correct and global management, and they are therefore discussed in this article. Neuroimaging appears important to the correct management of age-related brain cognitive diseases not only within a medical perspective, but also legal, according to a wider approach based on development of relationship between neuroscience and law. The term neurolaw, the neologism born from the relationship between these two disciplines, is an emerging field of study, that deals with various issues in the impact of neurosciences on individual rights. Neuroimaging, enhancing the detection of physiological and pathological brain aging, could give an important contribution to the field of neurolaw in elderly where the full control of cognitive and volitional functions is necessary to maintain a whole series of rights linked to legal capacity. For this reason, in order to provide the clinician and researcher with a broad view of the brain-aging process, the role of neurolaw will be introduced into the brain-aging context

    Inspiratory muscle rehabilitation in critically ill adults a systematic review and meta-analysis

    Get PDF
    Rationale: Respiratory muscle weakness is common in critically ill patients; the role of targeted inspiratory muscle training (IMT) in intensive care unit rehabilitation strategies remains poorly defined. Objectives: The primary objective of the present study was to describe the range and tolerability of published methods for IMT. The secondary objectives were to determine whether IMT improves respiratory muscle strength and clinical outcomes in critically ill patients. Methods: We conducted a systematic review to identify randomized and nonrandomized studies of physical rehabilitation interventions intended to strengthen the respiratory muscles in critically ill adults. We searched the MEDLINE, Embase, HealthSTAR, CINAHL, and CENTRAL databases (inception to September Week 3, 2017) and conference proceedings (2012 to 2017). Data were independently extracted by two authors and collected on a standardized report form. Results: A total of 28 studies (N = 1,185 patients) were included. IMT was initiated during early mechanical ventilation (8 studies), after patients proved difficult to wean (14 studies), or after extubation (3 studies), and 3 other studies did not report exact timing. Threshold loading was the most common technique; 13 studies employed strength training regimens, 11 studies employed endurance training regimens, and 4 could not be classified. IMT was feasible, and there were few adverse events during IMT sessions (nine studies; median, 0%; interquartile range, 0-0%). In randomized trials (n = 20), IMT improved maximal inspiratory pressure compared with control (15 trials; mean increase, 6 cm H2O; 95% confidence interval [CI], 5-8 cm H2O; pooled relative ratio of means, 1.19; 95% CI, 1.14-1.25) and maximal expiratory pressure (4 trials; mean increase, 9 cm H2O; 95% CI, 5-14 cm H2O). IMT was associated with a shorter duration of ventilation (nine trials; mean difference, 4.1 d; 95% CI, 0.8-7.4 d) and a shorter duration of weaning (eight trials; mean difference, 2.3 d; 95% CI, 0.7-4.0 d), but confidence in these pooled estimates was low owing to methodological limitations, including substantial statistical and methodological heterogeneity. Conclusions: Most studies of IMT in critically ill patients have employed inspiratory threshold loading. IMT is feasible and well tolerated in critically ill patients and improves both inspiratory and expiratory muscle strength. The impact of IMT on clinical outcomes requires future confirmation

    Deep white matter in Huntington's disease

    Get PDF
    White matter (WM) abnormalities have already been shown in presymptomatic (Pre-HD) and symptomatic HD subjects using Magnetic Resonance Imaging (MRI). In the present study, we examined the microstructure of the long-range large deep WM tracts by applying two different MRI approaches: Diffusion Tensor Imaging (DTI) -based tractography, and T2*weighted (iron sensitive) imaging. We collected Pre-HD subjects (n = 25), HD patients (n = 25) and healthy control subjects (n = 50). Results revealed increased axial (AD) and radial diffusivity (RD) and iron levels in Pre-HD subjects compared to controls. Fractional anisotropy decreased between the Pre-HD and HD phase and AD/RD increased and although impairment was pervasive in HD, degeneration occurred in a pattern in Pre-HD. Furthermore, iron levels dropped for HD patients. As increased iron levels are associated with remyelination, the data suggests that Pre-HD subjects attempt to repair damaged deep WM years before symptoms occur but this process fails with disease progression

    Major Superficial White Matter Abnormalities in Huntington's Disease

    Get PDF
    Background: The late myelinating superficial white matter at the juncture of the cortical gray and white matter comprising the intracortical myelin and short-range association fibers has not received attention in Huntington's disease. It is an area of the brain that is late myelinating and is sensitive to both normal aging and neurodegenerative disease effects. Therefore, it may be sensitive to Huntington's disease processes. Methods: Structural MRI data from 25 Pre-symptomatic subjects, 24 Huntington's disease patients and 49 healthy controls was run through a cortical pattern-matching program. The surface corresponding to the white matter directly below the cortical gray matter was then extracted. Individual subject's Diffusion Tensor Imaging (DTI) data was aligned to their structural MRI data. Diffusivity values along the white matter surface were then sampled at each vertex point. DTI measures with high spatial resolution across the superficial white matter surface were then analyzed with the General Linear Model to test for the effects of disease. Results: There was an overall increase in the axial and radial diffusivity across much of the superficial white matter (p < 0.001) in Pre-symptomatic subjects compared to controls. In Huntington's disease patients increased diffusivity covered essentially the whole brain (p < 0.001). Changes are correlated with genotype (CAG repeat number) and disease burden (p < 0.001). Conclusions: This study showed broad abnormalities in superficial white matter even before symptoms are present in Huntington's disease. Since, the superficial white matter has a unique microstructure and function these abnormalities suggest it plays an important role in the disease

    A study protocol for the evaluation of occupational mutagenic/carcinogenic risks in subjects exposed to antineoplastic drugs: a multicentric project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some industrial hygiene studies have assessed occupational exposure to antineoplastic drugs; other epidemiological investigations have detected various toxicological effects in exposure groups labeled with the job title. In no research has the same population been studied both environmentally and epidemiologically. The protocol of the epidemiological study presented here uses an integrated environmental and biological monitoring approach. The aim is to assess in hospital nurses preparing and/or administering therapy to cancer patients the current level of occupational exposure to antineoplastic drugs, DNA and chromosome damage as cancer predictive effects, and the association between the two.</p> <p>Methods/Design</p> <p>About 80 healthy non-smoking female nurses, who job it is to prepare or handle antineoplastic drugs, and a reference group of about 80 healthy non-smoking female nurses not occupationally exposed to chemicals will be examined simultaneously in a cross-sectional study. All the workers will be recruited from five hospitals in northern and central Italy after their informed consent has been obtained.</p> <p>Evaluation of surface contamination and dermal exposure to antineoplastic drugs will be assessed by determining cyclophosphamide on selected surfaces (wipes) and on the exposed nurses' clothes (pads). The concentration of unmetabolized cyclophosphamide as a biomarker of internal dose will be measured in end-shift urine samples from exposed nurses.</p> <p>Biomarkers of effect and susceptibility will be assessed in exposed and unexposed nurses: urinary concentration of 8-hydroxy-2-deoxyguanosine; DNA damage detected using the single-cell microgel electrophoresis (comet) assay in peripheral white blood cells; micronuclei and chromosome aberrations in peripheral blood lymphocytes. Genetic polymorphisms for enzymes involved in metabolic detoxification (i.e. glutathione <it>S</it>-transferases) will also be analysed.</p> <p>Using standardized questionnaires, occupational exposure will be determined in exposed nurses only, whereas potential confounders (medicine consumption, lifestyle habits, diet and other non-occupational exposures) will be assessed in both groups of hospital workers.</p> <p>Statistical analysis will be performed to ascertain the association between occupational exposure to antineoplastic drugs and biomarkers of DNA and chromosome damage, after taking into account the effects of individual genetic susceptibility, and the presence of confounding exposures.</p> <p>Discussion</p> <p>The findings of the study will be useful in updating prevention procedures for handling antineoplastic drugs.</p

    Studio delle modificazioni del flusso ematico cerebrale nel corso di attivazione cerebrale: aspetti metodologici ed applicazioni cliniche

    No full text
    Dottorato di ricerca in neurobiologia. 8. ciclo. Coordinatore A. M. Giuffrida Stella. Tutore S. RuggieriConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    corecore