902 research outputs found

    Low-Energy Scale Excitations in the Spectral Function of Organic Monolayer Systems

    Full text link
    Using high-resolution photoemission spectroscopy we demonstrate that the electronic structure of several organic monolayer systems, in particular 1,4,5,8-naphthalene tetracarboxylic dianhydride and Copper-phtalocyanine on Ag(111), is characterized by a peculiar excitation feature right at the Fermi level. This feature displays a strong temperature dependence and is immediatly connected to the binding energy of the molecular states, determined by the coupling between the molecule and the substrate. At low temperatures, the line-width of this feature, appearing on top of the partly occupied lowest unoccupied molecular orbital of the free molecule, amounts to only ≈25\approx 25 meV, representing an unusually small energy scale for electronic excitations in these systems. We discuss possible origins, related e.g. to many-body excitations in the organic-metal adsorbate system, in particular a generalized Kondo scenario based on the single impurity Anderson model.Comment: 6 pages, 3 figures, accepted as PRB Rapid Communication

    Experimental study of nonlinear conductance in small metallic samples

    Get PDF
    We have directly observed current-dependent, nonlinear contributions to the conductance fluctuations of phase-coherent metallic wires and loops. The fluctuations in the current-voltage curves are reproducible, asymmetric about I=0, and in qualitative agreement with theoretical predictions. In ac measurements, the nonlinear terms also generate large harmonic signals of the conductance fluctuations whose dependence on the drive current can be understood qualitatively. The spectra of harmonics from loops and wires have different dependences on the voltage across the sample

    Length-Independent Voltage Fluctuations in Small Devices

    Get PDF
    Conductance fluctuations in one-dimensional lines of length L shorter than the phase-coherence length Lφ are not universal but diverge as L-2. Using the Onsager relations and voltage additivity, we show that the voltage fluctuations are independent of the distance between voltage probes. The antisymmetric (Hall-type) contribution to the voltage fluctuations is constant for all values of L. Measurements of the voltage fluctuations and correlation function between different regions in Au and Sb lines confirm these results

    Nutritional Health Risks in Rural Elderly

    Get PDF

    Assessing Candidate Gene nsSNPs for Phenotypic Differences in Double-Strand Break Repair Using Radiation-Induced ÎłH2A.X Foci

    Get PDF
    Nonsynonymous SNPs (nsSNPs) in DNA repair genes may be important determinants of DNA damage and cancer risk. We applied a set of screening criteria to a large number of nsSNPs and selected a subset of SNPs that were likely candidates for phenotypic effects on DNA double-strand break repair (DSBR). In order to induce and follow DSBR, we exposed panels of cell lines to gamma irradiation and followed the formation and disappearance of ÎłH2A.X foci over time. All panels of cell lines showed significant increases in number, intensity, and area of foci at both the 1-hour and 3-hour time points. Twenty four hours following exposure, the number of foci returned to preexposure levels in all cell lines, whereas the size and intensity of foci remained significantly elevated. We saw no significant difference in ÎłH2A.X foci between controls and any of the panels of cell lines representing the different nsSNPs

    Probe-Configuration-Dependent Decoherence in an Aharonov-Bohm Ring

    Full text link
    We have measured transport through mesoscopic Aharonov-Bohm (AB) rings with two different four-terminal configurations. While the amplitude and the phase of the AB oscillations are well explained within the framework of the Landaur-B\"uttiker formalism, it is found that the probe configuration strongly affects the coherence time of the electrons, i.e., the decoherence is much reduced in the configuration of so-called nonlocal resistance. This result should provide an important clue in clarifying the mechanism of quantum decoherence in solids.Comment: 4 pages, 4 figures, RevTe

    Universal scaling of nonlocal and local resistance fluctuations in small wires

    Get PDF
    Resistance fluctuations in small metal samples result from coherent transport of the carriers. The wave functions of the carriers extend into regions which are not accessible classically. We have directly measured the length dependence of the nonlocal magnetoresistance fluctuations in Sb and Au wires by studying regions of our samples separated from the classical current path by a distance L which varied from 3Lcphi down to 0.2Lcphi (where Lcphi is the phase coherence length for the carriers in the metal). These fluctuations decay exponentially with L/Lcphi. Measurements along the classical current paths scale more slowly with L/Lcphi than predicted by the analytical theory but are in agreement with numerical simulations. We have also studied the length dependence of the magnetic field correlation scale BC, and we find that it is in qualitative agreement with a recent model calculation that accounts for the voltage probes

    Temperature Dependence of the Normal-Metal Aharonov-Bohm Effect

    Get PDF
    The amplitude of h/e periodic oscillations in the magnetoresistance of very small normal-metal (Au) rings, as well as the harmonic h/2e, have been studied as a function of temperature. The amplitudes depend on the temperature T roughly as T-1/2, as expected from the averaging of conduction channels in the absence of inelastic scattering, but may not be entirely consistent with this model. At the lowest T, the size of the fluctuations in the conductance is about ΔG∼e2/h, as predicted recently

    Ferromagnetic coupling of mononuclear Fe centers in a self-assembled metal-organic network on Au(111)

    Get PDF
    The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surrounding. Using scanning tunneling microscopy, we resolve the self-assembled formation of highly ordered bilayer structures of Fe atoms and organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe atoms are encaged in a three-dimensional coordination motif by three T4PT molecules in the surface plane and an additional T4PT unit on top. Within this crystal field, the Fe atoms retain a magnetic ground state with easy-axis anisotropy, as evidenced by X-ray absorption spectroscopy and X-ray magnetic circular dichroism. The magnetization curves reveal the existence of ferromagnetic coupling between the Fe centers
    • …
    corecore