1,785 research outputs found
Measurements of jet cross-section ratios in 13 TeV proton-proton collisions with ATLAS
Measurements of jet cross-section ratios between inclusive bins of jet multiplicity are performed in Formula Presented of proton-proton collisions with Formula Presented center-of-mass energy, recorded with the ATLAS detector at CERN’s Large Hadron Collider. These ratios are constructed from double-differential cross-section measurements that are made in bins of jet multiplicity and other observables that are sensitive the energy scale and angular distribution of radiation due to the strong interaction in the final state. Additionally, the scalar sum of the two leading jets’ transverse momenta is measured triple differentially, in bins of the third jet’s transverse momentum and of jet multiplicity. These measurements are unfolded to account for acceptance and detector-related effects. The measured distributions are used to construct ratios of the inclusive jet-multiplicity bins, which have been shown to be sensitive to the strong coupling Formula Presented while being less sensitive than other observables to systematic uncertainties and parton distribution functions. The measured distributions are compared with state-of-the-art QCD calculations, including next-to-next-to-leading-order predictions for two- and three-jet events. These predictions are generally found to model the data well and perform best in bins with a modest requirement on the third jet’s transverse momentum. Significant differences between data and Monte Carlo predictions are observed in events with large rapidity gaps and invariant masses of the leading jet pair. Studies leading to reduced jet energy scale uncertainties significantly improve the precision of this work and are documented herein
Fiducial and differential cross-section measurements of electroweak Wγjj production in pp collisions at s=13 TeV with the ATLAS detector
The observation of the electroweak production of a W boson and a photon in association with two jets, using pp collision data at the Large Hadron Collider at a centre of mass energy of s=13 TeV, is reported. The data were recorded by the ATLAS experiment from 2015 to 2018 and correspond to an integrated luminosity of 140 fb-1. This process is sensitive to the quartic gauge boson couplings via the vector boson scattering mechanism and provides a stringent test of the electroweak sector of the Standard Model. Events are selected if they contain one electron or muon, missing transverse momentum, at least one photon, and two jets. Multivariate techniques are used to distinguish the electroweak Wγjj process from irreducible background processes. The observed significance of the electroweak Wγjj process is well above six standard deviations, compared to an expected significance of 6.3 standard deviations. Fiducial and differential cross sections are measured in a fiducial phase space close to the detector acceptance, which are in reasonable agreement with leading order Standard Model predictions from MadGraph5+Pythia8 and Sherpa. The results are used to constrain new physics effects in the context of an effective field theory
Observation of quantum entanglement with top quarks at the ATLAS detector
Entanglement is a key feature of quantum mechanics1–3, with applications in fields such as metrology, cryptography, quantum information and quantum computation4–8. It has been observed in a wide variety of systems and length scales, ranging from the microscopic9–13 to the macroscopic14–16. However, entanglement remains largely unexplored at the highest accessible energy scales. Here we report the highest-energy observation of entanglement, in top–antitop quark events produced at the Large Hadron Collider, using a proton–proton collision dataset with a centre-of-mass energy of √s = 13 TeV and an integrated luminosity of 140 inverse femtobarns (fb)−1 recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top–antitop quark production threshold, at which the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from the limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be D = −0.537 ± 0.002 (stat.) ± 0.019 (syst.) for 340GeV<380GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement so far
Design and Simulated Performance of Calorimetry Systems for the ECCE Detector at the Electron Ion Collider
We describe the design and performance the calorimeter systems used in the
ECCE detector design to achieve the overall performance specifications
cost-effectively with careful consideration of appropriate technical and
schedule risks. The calorimeter systems consist of three electromagnetic
calorimeters, covering the combined pseudorapdity range from -3.7 to 3.8 and
two hadronic calorimeters. Key calorimeter performances which include energy
and position resolutions, reconstruction efficiency, and particle
identification will be presented.Comment: 19 pages, 22 figures, 5 table
ECCE unpolarized TMD measurements
We performed feasibility studies for various measurements that are related to
unpolarized TMD distribution and fragmentation functions. The processes studied
include semi-inclusive Deep inelastic scattering (SIDIS) where single hadrons
(pions and kaons) were detected in addition to the scattered DIS lepton. The
single hadron cross sections and multiplicities were extracted as a function of
the DIS variables and , as well as the semi-inclusive variables ,
which corresponds to the momentum fraction the detected hadron carries relative
to the struck parton and , which corresponds to the transverse momentum of
the detected hadron relative to the virtual photon. The expected statistical
precision of such measurements is extrapolated to accumulated luminosities of
10 fb and potential systematic uncertainties are approximated given the
deviations between true and reconstructed yields.Comment: 12 pages, 9 figures, to be submitted in joint ECCE proposal NIM-A
volum
Open Heavy Flavor Studies for the ECCE Detector at the Electron Ion Collider
The ECCE detector has been recommended as the selected reference detector for
the future Electron-Ion Collider (EIC). A series of simulation studies have
been carried out to validate the physics feasibility of the ECCE detector. In
this paper, detailed studies of heavy flavor hadron and jet reconstruction and
physics projections with the ECCE detector performance and different magnet
options will be presented. The ECCE detector has enabled precise EIC heavy
flavor hadron and jet measurements with a broad kinematic coverage. These
proposed heavy flavor measurements will help systematically study the
hadronization process in vacuum and nuclear medium especially in the
underexplored kinematic region.Comment: Open heavy flavor studies with the EIC reference detector design by
the ECCE consortium. 11 pages, 11 figures, to be submitted to the Nuclear
Instruments and Methods
ECCE Sensitivity Studies for Single Hadron Transverse Single Spin Asymmetry Measurements
We performed feasibility studies for various single transverse spin
measurements that are related to the Sivers effect, transversity and the tensor
charge, and the Collins fragmentation function. The processes studied include
semi-inclusive deep inelastic scattering (SIDIS) where single hadrons (pions
and kaons) were detected in addition to the scattered DIS lepton. The data were
obtained in {\sc pythia}6 and {\sc geant}4 simulated e+p collisions at 18 GeV
on 275 GeV, 18 on 100, 10 on 100, and 5 on 41 that use the ECCE detector
configuration. Typical DIS kinematics were selected, most notably
GeV, and cover the range from to . The single spin
asymmetries were extracted as a function of and , as well as the
semi-inclusive variables , and . They are obtained in azimuthal moments
in combinations of the azimuthal angles of the hadron transverse momentum and
transverse spin of the nucleon relative to the lepton scattering plane. The
initially unpolarized MonteCarlo was re-weighted in the true kinematic
variables, hadron types and parton flavors based on global fits of fixed target
SIDIS experiments and annihilation data. The expected statistical
precision of such measurements is extrapolated to 10 fb and potential
systematic uncertainties are approximated given the deviations between true and
reconstructed yields. The impact on the knowledge of the Sivers functions,
transversity and tensor charges, and the Collins function has then been
evaluated in the same phenomenological extractions as in the Yellow Report. The
impact is found to be comparable to that obtained with the parameterized Yellow
Report detector and shows that the ECCE detector configuration can fulfill the
physics goals on these quantities.Comment: 22 pages, 22 figures, to be submitted to joint ECCE proposal NIM-A
volum
Search for light neutral particles decaying promptly into collimated pairs of electrons or muons in pp collisions at s = 13 TeV with the ATLAS detector
A search for a dark photon, a new light neutral particle, which decays promptly into collimated pairs of electrons or muons is presented. The search targets dark photons resulting from the exotic decay of the Standard Model Higgs boson, assuming its production via the dominant gluon-gluon fusion mode. The analysis is based on 140fb-1 of data collected with the ATLAS detector at the Large Hadron Collider from proton-proton collisions at a center-of-mass energy of 13 TeV. Events with collimated pairs of electrons or muons are analysed and background contributions are estimated using data-driven techniques. No significant excess in the data above the Standard Model background is observed. Upper limits are set at 95% confidence level on the branching ratio of the Higgs boson decay into dark photons between 0.001% and 5%, depending on the assumed dark photon mass and signal model
AI-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider
The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility that
will study the nature of the "glue" that binds the building blocks of the
visible matter in the universe. The proposed experiment will be realized at
Brookhaven National Laboratory in approximately 10 years from now, with
detector design and R&D currently ongoing. Notably, EIC is one of the first
large-scale facilities to leverage Artificial Intelligence (AI) already
starting from the design and R&D phases. The EIC Comprehensive Chromodynamics
Experiment (ECCE) is a consortium that proposed a detector design based on a
1.5T solenoid. The EIC detector proposal review concluded that the ECCE design
will serve as the reference design for an EIC detector. Herein we describe a
comprehensive optimization of the ECCE tracker using AI. The work required a
complex parametrization of the simulated detector system. Our approach dealt
with an optimization problem in a multidimensional design space driven by
multiple objectives that encode the detector performance, while satisfying
several mechanical constraints. We describe our strategy and show results
obtained for the ECCE tracking system. The AI-assisted design is agnostic to
the simulation framework and can be extended to other sub-detectors or to a
system of sub-detectors to further optimize the performance of the EIC
detector.Comment: 16 pages, 18 figures, 2 appendices, 3 table
Search for heavy neutral Higgs bosons decaying into a top quark pair in 140 fb−1 of proton-proton collision data at = 13 TeV with the ATLAS detector
- …
