23 research outputs found

    Fine-tuning spermidine binding modes in the putrescine binding protein PotF

    Get PDF
    A profound understanding of the molecular interactions between receptors and ligands is important throughout diverse research, such as protein design, drug discovery, or neuroscience. What determines specificity and how do proteins discriminate against similar ligands? In this study, we analyzed factors that determine binding in two homologs belonging to the well-known superfamily of periplasmic binding proteins, PotF and PotD. Building on a previously designed construct, modes of polyamine binding were swapped. This change of specificity was approached by analyzing local differences in the binding pocket as well as overall conformational changes in the protein. Throughout the study, protein variants were generated and characterized structurally and thermodynamically, leading to a specificity swap and improvement in affinity. This dataset not only enriches our knowledge applicable to rational protein design but also our results can further lay groundwork for engineering of specific biosensors as well as help to explain the adaptability of pathogenic bacteria

    Absorption and emission spectroscopic investigation of thermal dynamics and photo-dynamics of the rhodopsin domain of the rhodopsin-guanylyl cyclase from the aquatic fungus Blastocladiella emersonii

    Get PDF
    A new class of rhodopsins covalently linked to an enzymatic domain was discovered recently. A member of this class of enzymerhodopsins, the rhodopsin-guanylyl cyclase (RhGC) was identified in the aquatic fungus Blastocladiella emersonii (BE). Characterization of RhGC showed that the second-messenger molecule cGMP (cyclic guanylyl monophosphate) is produced upon green light illumination. Here, the rhodopsin domain Rh (BE) of the rhodopsin-guanylyl cyclase RhGC was studied by absorption and emission spectroscopic methods. It was found that fresh thawed Rh (BE) was composed of a mixture of retinal – protein conformations. These retinal conformations are likely all-trans protonated retinal Schiff base (Ret_1), 13-cis protonated retinal Schiff base with repositioned counter ion (Ret_2), all-trans protonated retinal Schiff base with repositioned counter ion (Ret_3), and deprotonated all-trans retinal Schiff base (Ret_4). The Rh (BE) thermal denaturing was studied: An apparent protein melting temperature of m ≈ 49 °C was determined; the apparent protein melting time at room temperature (≈ 21.9 °C) was tm ≈ 1.45 h. Thermal retinal conformation restructuring with irreversible conversion likely to deprotonated 13-cis retinal Schiff base (Ret_4’) was observed. The photo-excitation of all-trans protonated retinal Schiff base (Ret_1) caused a primary photo-cycle dynamics involving excited-state picosecond all-trans – 13-cis isomerization (13-cis protonated retinal Schiff base Ret_5 formation) followed by ground-state sub-second intermediate retinal Schiff base formations (Ret_2, Ret_3, Ret_4) and sub-second to second recovery to the initial all-trans protonated retinal Schiff base (Ret_1). Long-time all-trans protonated retinal Schiff base photo-excitation caused irreversible (likely 13-cis) retinal Schiff base (Ret_4’) formation

    Optogenetic tools for manipulation of cyclic nucleotides functionally coupled to cyclic nucleotide‐gated channels

    Get PDF
    Background and Purpose The cyclic nucleotides cAMP and cGMP are ubiquitous second messengers regulating numerous biological processes. Malfunctional cNMP signalling is linked to diseases and thus is an important target in pharmaceutical research. The existing optogenetic toolbox in Caenorhabditis elegans is restricted to soluble adenylyl cyclases, the membrane‐bound Blastocladiella emersonii CyclOp and hyperpolarizing rhodopsins; yet missing are membrane‐bound photoactivatable adenylyl cyclases and hyperpolarizers based on K+ currents. Experimental Approach For the characterization of photoactivatable nucleotidyl cyclases, we expressed the proteins alone or in combination with cyclic nucleotide‐gated channels in muscle cells and cholinergic motor neurons. To investigate the extent of optogenetic cNMP production and the ability of the systems to depolarize or hyperpolarize cells, we performed behavioural analyses, measured cNMP content in vitro, and compared in vivo expression levels. Key Results We implemented Catenaria CyclOp as a new tool for cGMP production, allowing fine‐control of cGMP levels. We established photoactivatable membrane‐bound adenylyl cyclases, based on mutated versions (“A‐2x”) of Blastocladiella and Catenaria (“Be,” “Ca”) CyclOp, as N‐terminal YFP fusions, enabling more efficient and specific cAMP signalling compared to soluble bPAC, despite lower overall cAMP production. For hyperpolarization of excitable cells by two‐component optogenetics, we introduced the cAMP‐gated K+‐channel SthK from Spirochaeta thermophila and combined it with bPAC, BeCyclOp(A‐2x), or YFP‐BeCyclOp(A‐2x). As an alternative, we implemented the B. emersonii cGMP‐gated K+‐channel BeCNG1 together with BeCyclOp. Conclusion and Implications We established a comprehensive suite of optogenetic tools for cNMP manipulation, applicable in many cell types, including sensory neurons, and for potent hyperpolarization.Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Biochemische und biophysikalische Charakterisierung von Rhodopsin-Guanylylzyklasen

    No full text
    Rhodopsin-Guanylylzyklasen (RhGC) sind einzigartige Photorezeptoren, die kĂŒrzlich in Pilzen der Abteilung Blastocladiomycota entdeckt wurden [1]. RhGCs gehören zu den Enzym-Rhodopsinen und die Licht-sensitive mikrobielle Rhodopsin DomĂ€ne ist kovalent mit einer Typ III Guanylylzyklase verbunden. Guanylylzyklasen bilden den sekundĂ€ren Botenstoff cGMP, der zusammen mit cAMP eine Vielzahl biologischer Prozesse reguliert [2–12]. In der vorliegenden Arbeit wurden die fĂŒnf neu-entdeckten RhGCs mithilfe unterschiedlicher biochemischer und biophysikalischer Methoden charakterisiert. Elektrophysiologische Messungen erbrachten einen indirekten Nachweis fĂŒr eine GrĂŒnlicht-aktivierte cGMP Synthese bei den RhGCs aus Blastocladiella emersonii (Be) und Catenaria anguillulae (Ca). Die Licht-aktivierte Guanylylzyklasen Funktion dieser RhGCs konnte durch ELISA Experimente und nach Aufreinigung der Photorezeptoren bestĂ€tigt werden. Belichtung fĂŒhrte zu einer 100-fachen oder 200-fachen Erhöhung von cGMP mit einem vmax von 1.8 oder 11.6 ”mol/min/mg(Protein) bei BeRhGC oder CaRhGC. Im Dunkeln verblieb bei beiden Photorezeptoren die cGMP-Konzentration auf dem Niveau von Kontrollzellen. Durch eine enzymkinetische Analyse der isolierten Guanylylzyklase DomĂ€nen (Be/CaGC) konnte die konstitutive AktivitĂ€t der enzymatischen Einheit gezeigt werden, die im Vergleich zu den VolllĂ€ngen Photorezeptoren 3-6x reduziert war. Weiterhin wurden die Photozyklen der isolierten Rhodopsin DomĂ€nen mithilfe spektroskopischer Methoden untersucht und Photointermediate identifiziert, die typisch fĂŒr mikrobielle Rhodopsine sind. Die M-Intermediate zerfielen langsam mit τ ~ 100 ms bei BeRh und τ ~ 500 ms bei CaRh. Um die kinetischen und spektroskopischen Parameter der Photorezeptoren zu verĂ€ndern, wurden die Be/Ca Rhodopsin DomĂ€nen mutiert. ZusĂ€tzlich wurde die SubstratspezifitĂ€t der RhGCs geĂ€ndert und eine Doppelmutation (E497K/C566D) in der katalytischen DomĂ€ne erzeugte Rhodopsin-Adenylylzyklasen (RhACs). Die Licht-induzierte cAMP Synthese der RhACs wurde in Xenopus Oocyten getestet und im Vergleich zu BeRhAC zeigte CaRhAC eine erhöhte Licht-zu-Dunkel-AktivitĂ€t (6x) einhergehend mit einer verringerten DunkelaktivitĂ€t (5.5x). Um weitere Einblicke in die kĂŒrzlich entdeckten RhGCs zu erhalten, wurden die isolierten Zyklase DomĂ€nen, Be/CaGC und CaAC, in Gegenwart von NTP Analoga kristallisiert. Neben hochauflösenden monomeren GC Strukturen ohne Ligand wurde eine 2.25 Å Struktur der mutierten Zyklase, CaAC, mit dem ATP Analogon ATPαS gelöst. Die CaAC Struktur zeigt ein antiparalleles Arrangement der Dimer-Untereinheiten und die Bindung der Nukleotidbase durch die zuvor mutierten Reste. Aufgrund der Ähnlichkeit zu anderen Typ III Zyklasen kann auf einen klassischen Reaktionsablauf bei RhGCs rĂŒckgeschlossen werden. Abschließend wurde die Anwendbarkeit von Ca/BeRhGC sowie CaRhAC in hippokampalen Rattenneuronen und CHO Zellen getestet. Diese Experimente zeigen, dass sowohl RhGCs als auch YFP-CaRhAC als optogenetische Werkzeuge eingesetzt werden können, um die Zellbotenstoffe cGMP bzw. cAMP prĂ€zise mit Licht zu regulieren

    Biochemische und biophysikalische Charakterisierung von Rhodopsin-Guanylylzyklasen

    Get PDF
    Rhodopsin-Guanylylzyklasen (RhGC) sind einzigartige Photorezeptoren, die kĂŒrzlich in Pilzen der Abteilung Blastocladiomycota entdeckt wurden [1]. RhGCs gehören zu den Enzym-Rhodopsinen und die Licht-sensitive mikrobielle Rhodopsin DomĂ€ne ist kovalent mit einer Typ III Guanylylzyklase verbunden. Guanylylzyklasen bilden den sekundĂ€ren Botenstoff cGMP, der zusammen mit cAMP eine Vielzahl biologischer Prozesse reguliert [2–12]. In der vorliegenden Arbeit wurden die fĂŒnf neu-entdeckten RhGCs mithilfe unterschiedlicher biochemischer und biophysikalischer Methoden charakterisiert. Elektrophysiologische Messungen erbrachten einen indirekten Nachweis fĂŒr eine GrĂŒnlicht-aktivierte cGMP Synthese bei den RhGCs aus Blastocladiella emersonii (Be) und Catenaria anguillulae (Ca). Die Licht-aktivierte Guanylylzyklasen Funktion dieser RhGCs konnte durch ELISA Experimente und nach Aufreinigung der Photorezeptoren bestĂ€tigt werden. Belichtung fĂŒhrte zu einer 100-fachen oder 200-fachen Erhöhung von cGMP mit einem vmax von 1.8 oder 11.6 ”mol/min/mg(Protein) bei BeRhGC oder CaRhGC. Im Dunkeln verblieb bei beiden Photorezeptoren die cGMP-Konzentration auf dem Niveau von Kontrollzellen. Durch eine enzymkinetische Analyse der isolierten Guanylylzyklase DomĂ€nen (Be/CaGC) konnte die konstitutive AktivitĂ€t der enzymatischen Einheit gezeigt werden, die im Vergleich zu den VolllĂ€ngen Photorezeptoren 3-6x reduziert war. Weiterhin wurden die Photozyklen der isolierten Rhodopsin DomĂ€nen mithilfe spektroskopischer Methoden untersucht und Photointermediate identifiziert, die typisch fĂŒr mikrobielle Rhodopsine sind. Die M-Intermediate zerfielen langsam mit τ ~ 100 ms bei BeRh und τ ~ 500 ms bei CaRh. Um die kinetischen und spektroskopischen Parameter der Photorezeptoren zu verĂ€ndern, wurden die Be/Ca Rhodopsin DomĂ€nen mutiert. ZusĂ€tzlich wurde die SubstratspezifitĂ€t der RhGCs geĂ€ndert und eine Doppelmutation (E497K/C566D) in der katalytischen DomĂ€ne erzeugte Rhodopsin-Adenylylzyklasen (RhACs). Die Licht-induzierte cAMP Synthese der RhACs wurde in Xenopus Oocyten getestet und im Vergleich zu BeRhAC zeigte CaRhAC eine erhöhte Licht-zu-Dunkel-AktivitĂ€t (6x) einhergehend mit einer verringerten DunkelaktivitĂ€t (5.5x). Um weitere Einblicke in die kĂŒrzlich entdeckten RhGCs zu erhalten, wurden die isolierten Zyklase DomĂ€nen, Be/CaGC und CaAC, in Gegenwart von NTP Analoga kristallisiert. Neben hochauflösenden monomeren GC Strukturen ohne Ligand wurde eine 2.25 Å Struktur der mutierten Zyklase, CaAC, mit dem ATP Analogon ATPαS gelöst. Die CaAC Struktur zeigt ein antiparalleles Arrangement der Dimer-Untereinheiten und die Bindung der Nukleotidbase durch die zuvor mutierten Reste. Aufgrund der Ähnlichkeit zu anderen Typ III Zyklasen kann auf einen klassischen Reaktionsablauf bei RhGCs rĂŒckgeschlossen werden. Abschließend wurde die Anwendbarkeit von Ca/BeRhGC sowie CaRhAC in hippokampalen Rattenneuronen und CHO Zellen getestet. Diese Experimente zeigen, dass sowohl RhGCs als auch YFP-CaRhAC als optogenetische Werkzeuge eingesetzt werden können, um die Zellbotenstoffe cGMP bzw. cAMP prĂ€zise mit Licht zu regulieren.Rhodopsin-guanylyl cyclases (RhGC) are unique photoreceptors recently discovered in Blastocladiomycota fungi [1]. In RhGCs the light-sensitive microbial rhodopsin domain is covalently linked to a type III guanylyl cyclase. Guanylyl cyclases form the second messenger cGMP, which together with cAMP regulates a variety of biological processes [2–12]. Due to their architecture, RhGCs are classified as microbial enzyme rhodopsins. In the present work, the five newly discovered RhGCs were characterized using different biochemical and biophysical methods. Electrophysiological measurements provided indirect evidence for green light-activated cGMP synthesis of the RhGCs from Blastocladiella emersonii (Be) and Catenaria anguillulae (Ca). The light-activated guanylyl cyclase function could be confirmed by ELISA experiments and after purification of these photoreceptors. Green illumination led to a 100-fold or 200-fold increase in cGMP with a vmax of 1.8 or 11.6 ”mol/min/mg(protein) for BeRhGC or CaRhGC. In the dark the cGMP concentration remained at the level of control cells for both photoreceptors. A kinetic analysis of the isolated guanylyl cyclase domains (Be/CaGC) revealed the constitutive activity of the enzymatic domain, which was 3-6x reduced compared to the full-length photoreceptors. A spectroscopic characterization of the Be/Ca rhodopsin domains allowed the identification of photocycle intermediates, which are typical for microbial rhodopsins. The M-intermediates decayed slowly with a τ ~ 100 ms for BeRh and τ ~ 500 ms for CaRh. The Be/Ca rhodopsin domains were mutated to change the kinetic and spectroscopic parameters of the photoreceptors. In addition, the substrate specificity of the RhGCs was switched to ATP by a double mutation (E497K/C566D) in the catalytic domain. The light-induced cAMP synthesis of the generated rhodopsin-adenylyl cyclases (Be/CaRhACs) was shown in Xenopus oocytes and after purification of the proteins. Compared to BeRhAC, CaRhAC showed an increased light-to-dark activity (6x) and a decreased activity in darkness (5.5x). To get further insight into the recently discovered RhGCs, the isolated cyclase domains, Be/CaGC and CaAC, were crystallized in the presence of NTP analogues. High-resolution monomeric GC structures without a bound ligand were produced. Additionally, a 2.25 Å structure of the mutated cyclase, CaAC, with the ATP analogue ATPαS was solved. The CaAC structure shows an antiparallel arrangement of the dimer subunits and the nucleotide base is bound by the previously mutated residues. Due to the similarity to other type III cyclases, a classical reaction sequence for RhGCs can be deduced. Finally, the applicability of Ca/BeRhGC and CaRhAC was tested in hippocampal rat neurons and CHO cells. These application-oriented approaches show that both RhGCs and YFP-CaRhAC can be used as optogenetic tools to precisely control cGMP and cAMP with light

    Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Nematophagous Fungus Catenaria anguillulae

    Get PDF
    The rhodopsin-guanylyl cyclase from the nematophagous fungus Catenaria anguillulae belongs to a recently discovered class of enzymerhodopsins and may find application as a tool in optogenetics. Here the rhodopsin domain CaRh of the rhodopsin-guanylyl cyclase from Catenaria anguillulae was studied by absorption and emission spectroscopic methods. The absorption cross-section spectrum and excitation wavelength dependent fluorescence quantum distributions of CaRh samples were determined (first absorption band in the green spectral region). The thermal stability of CaRh was studied by long-time attenuation measurements at room temperature (20.5 °C) and refrigerator temperature of 3.5 °C. The apparent melting temperature of CaRh was determined by stepwise sample heating up and cooling down (obtained apparent melting temperature: 62 ± 2 °C). The photocycle dynamics of CaRh was investigated by sample excitation to the first inhomogeneous absorption band of the CaRhda dark-adapted state around 590 nm (long-wavelength tail), 530 nm (central region) and 470 nm (short-wavelength tail) and following the absorption spectra development during exposure and after exposure (time resolution 0.0125 s). The original protonated retinal Schiff base PRSBall-trans in CaRhda photo-converted reversibly to protonated retinal Schiff base PRSBall-trans,la1 with restructured surroundings (CaRhla1 light-adapted state, slightly blue-shifted and broadened first absorption band, recovery to CaRhda with time constant of 0.8 s) and deprotonated retinal Schiff base RSB13-cis (CaRhla2 light-adapted state, first absorption band in violet to near ultraviolet spectral region, recovery to CaRhda with time constant of 0.35 s). Long-time light exposure of light-adapted CaRhla1 around 590, 530 and 470 nm caused low-efficient irreversible degradation to photoproducts CaRhprod. Schemes of the primary photocycle dynamics of CaRhda and the secondary photocycle dynamics of CaRhla1 are developed

    Change in protein-ligand specificity through binding pocket grafting

    No full text
    Recognition and discrimination of small molecules are crucial for biological processes in living systems. Understanding the mechanisms that underlie binding specificity is of particular interest to synthetic biology, e.g. the engineering of biosensors with de novo ligand affinities. Promising scaffolds for such biosensors are the periplasmic binding proteins (PBPs) due to their ligand-mediated structural change that can be translated into a physically measurable signal. In this study we focused on the two homologous polyamine binding proteins PotF and PotD. Despite their structural similarity, PotF and PotD have different binding specificities for the polyamines putrescine and spermidine. To elucidate how specificity is determined, we grafted the binding site of PotD onto PotF. The introduction of 7 mutations in the first shell of the binding pocket leads to a swap in the binding profile as confirmed by isothermal titration calorimetry. Furthermore, the 1.7Å crystal structure of the new variant complexed with spermidine reveals the interactions of the specificity determining residues including a defined water network. Altogether our study shows that specificity is encoded in the first shell residues of the PotF binding pocket and that transplantation of these residues allows the swap of the binding specificity

    Upgrading a microplate reader for photobiology and all-optical experiments

    Get PDF
    Automation can vastly reduce the cost of experimental labor and thus facilitate high experimental throughput, but little off-the-shelf hardware for the automation of illumination experiments is commercially available. Here, we use inexpensive open-source electronics to add programmable illumination capabilities to a multimode microplate reader. We deploy this setup to characterize light-triggered phenomena in three different sensory photoreceptors. First, we study the photoactivation of Arabidopsis thaliana phytochrome B by light of different wavelengths. Second, we investigate the dark-state recovery kinetics of the Synechocystis sp. blue-light sensor Slr1694 at multiple temperatures and imidazole concentrations; while the kinetics of the W91F mutant of Slr1694 are strongly accelerated by imidazole, the wild-type protein is hardly affected. Third, we determine the light response of the Beggiatoa sp. photoactivatable adenylate cyclase bPAC in Chinese hamster ovary cells. bPAC is activated by blue light in dose-dependent manner with a half-maximal intensity of 0.58 mW cm−2; intracellular cAMP spikes generated upon bPAC activation decay with a half time of about 5 minutes after light switch-off. Taken together, we present a setup which is easily assembled and which thus offers a facile approach to conducting illumination experiments at high throughput, reproducibility and fidelity.Peer Reviewe
    corecore